Customer complaints of red water problems remain to be a frequent occurrence for water utilities. While material sources may vary, it is generally accepted that iron rust resulting from corrosion of iron based pipes is the predominant cause of red water issues. Recent efforts have lead to the development of a number of models that predict the occurrence of iron release and subsequent red water formation. This paper provides a detailed analysis of recently developed iron corrosion release models. Significant disagreement exists as to the processes and mechanisms leading to the release of iron corrosion materials into the water supply. This lack of consensus is made evident when comparing each of the iron release models. Considerable variation exists as to mechanisms considered and specific modeling goals. While each model may be beneficial for simulating certain aspects of corrosion release, no single model has been developed that provides a comprehensive portrayal of iron corrosion release phenomena. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/32271 |
Date | 17 June 2009 |
Creators | Benson, Andrew Shea |
Contributors | Environmental Sciences and Engineering, Dietrich, Andrea M., Edwards, Marc A., Gallagher, Daniel L. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | FINAL_THESIS_ABenson.pdf |
Page generated in 0.0019 seconds