Return to search

Dedekinds snitt definierar de reella talen

Uppsatsen riktar sig till personer som har läst minst en termin matematik på universitetet. Det var först på mitten av 1800-talet som man kunde ge en godtagbar definition för de irrationella talen, typ roten ur 2. Dessa hade sedan länge använts ändå bland annat i Babylonien, Indien och Kina. Uppsatsens inledningskapitel ger en snabb historielektion i form av en genomgång av räkningen och användandet av främst roten ur 2. Huvuddelen av uppsatsen är en redogörelse för metoden Dedekinds snitt, vilken är den mest kända av de metoder som definierar de irrationella talen. Utan de irrationella talen skulle det vara omöjligt att använda supremumegenskapen och de, inom matematiken, klassiska satserna som mellanliggande värde.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-792
Date January 2007
CreatorsLundqvist, Maria
PublisherKarlstads universitet, Fakulteten för teknik- och naturvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds