Return to search

Investigation into the effects of Artemisinin in myocardial ischaemia reperfusion injury

Artemisinin is herbal drug with a wide range of biological and physiological function. It is currently administered in the treatment against uncomplicated F.Palcifarum infections. It has also been shown to be cytotoxic against a variety of cancer cells. Despite the promise of many anti cancer drugs, drug induced cardiotoxicity has constantly threatened drug applicability especially in patients with co-morbities. Artemisinin has been shown to be cardioprotective, although the intracellular pathways remain to be elucidated. In this study, isolated perfused rat hearts were subjected to 35 minutes of ischaemia and 120 minutes reperfusion or primary cardiac myocytes subjected to 120 minutes hypoxia and 120 minutes reoxygenation where artemisinin (4.3μM) was administered in presence and absence of the PI3K inhibitor (wortmannin) (0.1μM), p70S6K inhibitor (rapamycin) (0.1μM), non selective nitric oxide synthase inhibitor (L-NAME) (100μM) and inducible nitric oxide synthase inhibitor (aminoguanidine) (100μM). At the end of the experiment, hearts underwent infarct size to risk ratio assessment via tri-phenyltetrazolium chloride staining or western blot analysis for p-Akt and p70S6K. Cardiac myocytes were assessed for either MTT analysis, cleaved-caspase 3 or for eNOS/iNOS or p-BAD activity using flow cytometry. In isolated hearts, artemisinin (0.1μM-100μM) showed a significant dose dependent decrease in infarct size (P<0.01-0.001 vs. I/R control). It was also shown to significantly improve cellular viability (66.5±6.3% vs. 29.3±6.1% in H/R, P<0.01) and decrease the levels of cleaved caspase-3 compared to the H/R control group (17.1±2.0% vs. 26.8±2.0% in H/R, P<0.001). Artemisinin was shown to confer protection via the activation of the PI3K-Akt-p70S6k cell survival pathway and presented an upregulation in p-eNOS and iNOS expression. Furthermore, co-administering artemisinin with doxorubicin showed artemisinin reverses I/R or H/R injury as well as doxorubicin-induced injury via the nitric oxide signalling pathway. Additionally, in HL-60 cells, the co-administration doubled artemisinins cytotoxicity while also implicating the nitric oxide pathway. This is the first study to shows that artemisinin ameliorates doxorubicin mediated cardiac injury whilst enhancing its cytotoxicity in HL-60 in a nitric oxide dependent manner. This study concluded that artemisinin was both anti apoptotic and protective against myocardial I/R injury via the PI3K-Akt-BAD/P70S6K and via the nitric oxide cell survival pathway as well as pro-apoptotic against HL-60 in a nitric oxide dependent manner.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:681431
Date January 2015
CreatorsBabba, M. A.
PublisherCoventry University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://curve.coventry.ac.uk/open/items/d5f16c89-60de-4981-8fa1-631773f92372/1

Page generated in 0.0014 seconds