Return to search

Protective mechanism(s) of anti-oxidants in pancreatic-islet β-cells against glucose toxicity and oxidative stress. / Protective mechanism(s) of anti-oxidants in pancreatic-islet beta-cells against glucose toxicity and oxidative stress

Poon, Chui Wa Christina. / "August 2011." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 123-131). / Abstracts in English and Chinese. / ABSTRACT --- p.i / 論文摘要 --- p.vi / ACKNOWLEDGEMENTS --- p.ix / PUBLICATIONS --- p.x / Abstracts --- p.x / ABBREVIATIONS --- p.xii / Chapter 1. --- GENERAL INTRODUCTION --- p.1 / Chapter 1.1. --- Diabetes --- p.1 / Chapter 1.1.1. --- Overview --- p.1 / Chapter 1.1.2. --- Diagnostic Criteria of Type-2 Diabetes --- p.2 / Chapter 1.1.3. --- Type-2 Diabetes (T2DM) --- p.3 / Chapter 1.1.3.1. --- Impaired Insulin Synthesis and Insulin Secretory Defects in Type-2 Diabetes --- p.3 / Chapter 1.1.3.2. --- β-Cell Dysfunction --- p.5 / Chapter 1.1.3.3. --- Insulin Resistance --- p.5 / Chapter 1.1.4. --- Glucose Toxicity --- p.6 / Chapter 1.1.4.1. --- Fasting Hyperglycemia --- p.8 / Chapter 1.1.4.2. --- Postprandial Hyperglycemia --- p.8 / Chapter 1.2. --- Oxidative Stress --- p.8 / Chapter 1.2.1. --- ROS and Mitochondria --- p.8 / Chapter 1.2.2. --- ROS Production by Mitochondria --- p.9 / Chapter 1.2.3. --- The Relationship of Glucose Recognition by β-cells and Oxidative Stress --- p.11 / Chapter 1.2.4. --- Important Roles of Glutathione in Pancreatic β-cells and Glutathione Synthesis --- p.14 / Chapter 1.2.5. --- N-acetyl-L-cysteine - A Potential Drug Treatment for Type-2 Diabetes? --- p.17 / Chapter 1.3. --- Role of F-actin Cytoskeleton on Glucose-induced Insulin Secretion --- p.18 / Chapter 1.4. --- Current Clinical Treatments for Type-2 Diabetes Mellitus --- p.21 / Chapter 1.4.1. --- Metformin --- p.22 / Chapter 1.4.2. --- Sulfonylureas --- p.22 / Chapter 1.4.3. --- Thiazolidinediones --- p.23 / Chapter 1.4.4. --- Glinides (Meglitinide Analogues) --- p.23 / Chapter 1.4.5. --- α-Glucosidase (AG) Inhibitors --- p.24 / Chapter 1.4.6. --- Dipeptidyl Peptidase-4 (DPP-4) Inhibitors --- p.24 / Chapter 1.4.7. --- (Clinical) Antioxidant Treatment --- p.24 / Chapter 1.5. --- Animal Models Used in Type-2 Diabetes Research --- p.25 / Chapter 1.6. --- Aims of Study --- p.27 / Chapter 2. --- RESEARCH DESIGN & METHODS --- p.28 / Chapter 2.1. --- Materials --- p.28 / Table 1. Sources and concentrations of drugs tested in this study: --- p.28 / Culture Medium - --- p.29 / General Reagents --- p.29 / Chapter 2.2. --- Isolation of Islets of Langerhans and Single Pancreatic β-Cells --- p.31 / Chapter 2.3. --- Measurement of Mitochondrial ROS Levels --- p.32 / Chapter 2.4. --- Measurement of Islets Insulin Release and Insulin Content --- p.34 / Chapter 2.4.1. --- Preparation of Samples --- p.34 / Chapter 2.4.2. --- Enzyme-Link Immunosorbent Assay (ELISA) --- p.35 / Chapter 2.5. --- Immunocytochemistry --- p.35 / Chapter 2.6. --- Data and Statistical Analysis --- p.37 / Chapter 3. --- RESULTS --- p.38 / Chapter 3.1. --- "Effects of L-NAC, Various Oxidative Stress Inducers/Reducers and Actin Polymerisation/Depolymerisation Inducers on Releasable Insulin Levels and Insulin Contents in Response to Low Glucose (5 mM) and High Glucose (15 mM) of Isolated Pancreatic Islets of (db+/m+) and (db+/db+) Mice" --- p.38 / Chapter 3.1.1. --- Effect of L-NAC on Insulin Secretion and Insulin Contents --- p.38 / Chapter 3.1.2. --- Effect of Cytochalasin B on Insulin Secretion and Insulin Contents --- p.39 / Chapter 3.1.3. --- Effect of 4-Phenyl Butyric Acid on Insulin Secretion and Insulin Contents --- p.43 / Chapter 3.1.4. --- Effect of Ursodeoxycholic Acid on Insulin Secretion and Insulin Contents --- p.46 / Chapter 3.1.5. --- Effect of Hydrogen Peroxide on Insulin Secretion and Insulin Contents --- p.49 / Chapter 3.1.6. --- Effect of Jasplakinolide on Insulin Secretion and Insulin Contents --- p.53 / Chapter 3.1.7. --- Effect of Thapsigargin on Insulin Secretion and Insulin Contents --- p.57 / Chapter 3.1.8. --- Effect of BSO on Insulin Secretion and Insulin Contents --- p.61 / Chapter 3.2. --- "Effects of L-NAC, Various Oxidative Stress Inducers/Reducers and Actin Polymerisation/Depolymerisation Inducers on Mitochondrial ROS Levels in Response to High Glucose (15 mM) Challenge in Isolated Single Pancreatic β-Cells of (db +/m+) and (db +/db +) Mice" --- p.65 / Chapter 3.2.1. --- "Effects of L-NAC (20 mM), 4-Phenyl Butyric Acid (4-PBA) (1 mM), Ursodeoxycholic Acid (UA) (500 μg/ml), H202 (200 μM), Thapsigargin (0.5 μM) and DL-Buthionine-[S,R]-Sulfoximine (BSO) (0.1 μM) Pre-treatments on Mitochondrial ROS Level in Response to High Glucose (15 mM) Challenge" --- p.65 / Chapter 3.2.2. --- "Effects of L-NAC (20 mM), Cytochalasin B (10 μM) and Jasplakinolide (5 μM) Pre-treatments on Mitochondrial ROS Level in Response to High Glucose (15 mM) Challenge_" --- p.76 / Chapter 3.3. --- "Effects of L-NAC, Various Oxidative Stress Inducers/Reducers and Actin Polymerisation/Depolymerisation Inducers on F-actin Cytoskeleton Levels Incubated in Low Glucose (5 mM) and High Glucose (15 mM) Medium in Single Pancreatic β-Cells of Non-Diabetic (db +/m+) and Diabetic (db +/db +) Mice" --- p.81 / Chapter 4. --- DISCUSSION --- p.100 / Chapter 4.1. --- General Discussion --- p.100 / Chapter 5. --- SUMMARY --- p.120 / Chapter 6. --- FUTURE PERSPECTIVES --- p.121 / Chapter 7. --- REFERENCES --- p.123

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_327562
Date January 2011
ContributorsPoon, Chui Wa Christina., Chinese University of Hong Kong Graduate School. Division of Biomedical Sciences.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xv, 131 leaves : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0024 seconds