在2型糖尿病病人身上,常常併發高膽固醇血症,HMG CoA 還原酶的抑制劑常常用作治療這類病症。由於高膽固醇血症與胰島素抵抗和2型糖尿病有著密切關係,我們推測辛伐他汀對於2型糖尿病的發展有著保護和有利的作用。在這項研究中,我們主要測試了辛伐他汀 (10 nM; 24 hr)對於胰島β細胞主要功能的影響,包括其對於葡萄糖的胰島素分泌功能影響。我們假設,在肥胖/糖尿病(db⁺/ db⁺)小鼠分離的胰島,辛伐他汀可以恢復葡萄糖 (5 mM和15 mM)引起的胰島素分泌(加上降低的胰島素含量)。 / 在這個項目中,我們運用24周大的基因糖尿糖C57BL/KSJ +db/+db (db⁺/db⁺)肥鼠和相同年齡的無糖尿病C57BL/KSJ +m/+m (db⁺/m⁺)小鼠作為動物模型。通過應用obese/diabetic (db+/db+)和lean/non-diabetic (db+/m+)中分離的胰腺胰島和胰島β細胞,我們研究了胰腺胰島功能性障礙的潛在機理以及辛伐他汀對於恢復葡萄糖 (5 mM和15 mM)引起的胰島素分泌(加上降低的胰島素含量)的有利作用。資料清晰的顯示,葡萄糖引起的胰島素分泌和胰島素含量在obese/diabetic (db+/db+)的胰腺胰島中明顯低於在lean/non-diabetic (db⁺/m⁺)的胰腺胰島中。在24hr的辛伐他汀處理後,辛伐他汀恢復了葡萄糖 (5 mM和15 mM)引起的胰島素分泌(加上降低的胰島素含量)及葡萄糖 (15 mM)引起的胞內鈣離子變化。 / 在這個項目中,我們證明鈣敏感受體 (CaSR)在obese/diabetic (db⁺/db⁺)中的表達量明顯較低,而辛伐他汀的處理可以顯著性增加鈣敏感受體在obese/diabetic (db⁺/db⁺)胰島中的表達。有人建議說,obese/diabetic (db⁺/db⁺)的胰島中被抑制的鈣敏感受體表達與胰島β細胞的胰島分泌功能障礙有關。這暗示了辛伐他汀可能通過變構啟動鈣敏感受體來恢復obese/diabetic (db⁺/db⁺)胰島中葡萄糖引起的胰島素分泌和胰島含量。實驗也同樣証明辛伐他汀調節的PLA₂信號通路對於辛伐他汀改善obese/diabetic (db⁺/db⁺)胰島β細胞的胰島素分泌功能起著至關重要的作用。除此之外,我們的實驗結果證明高濃度的葡萄糖處理顯著的增加了obese/diabetic (db⁺/db⁺)細胞膜肌動蛋白骨架的密度,而辛伐他汀顯著的減少了這一變化。因此,obese/diabetic (db⁺/db⁺)胰島β細胞的胰島素分泌障礙是由肌動蛋白細胞骨架聚集阻礙胰島素顆粒胞吐引起的。而辛伐他汀通過解聚和重組肌動蛋白細胞骨架來改善obese/diabetic (db⁺/db⁺)胰島β細胞的胰島素分泌功能。 / 在這項研究中,我們的實驗結果證明葡萄糖可以顯著提高obese/diabetic (db⁺/db⁺)胰島β細胞內ROS的含量。而辛伐他汀處理部分降低了胰島β細胞內ROS的含量。除此之外,我們還研究了5 mM和15 mM葡萄糖對於內質網應力(ER-stress)相關的蛋白比如PERK, eIF2α 和IRE1表達的影響。這些內質網跨膜蛋白可以感應ER-stress從而啟動應力感測器來開啟複雜的信號通路。與lean/non-diabetic (db⁺/m⁺)相比,PERK and eIF2α在obese/diabetic (db⁺/db⁺)的胰島中表達量更低,這表明obese/diabetic (db⁺/db⁺)胰島β細胞的功能性障礙可能與ER-stress有關。而辛伐他汀的處理明顯的增加了這些蛋白的表達量,由此證明辛伐他汀還通過對抗ER-stress來保護obese/diabetic (db⁺/db⁺)胰島β細胞。 / 總而言之,我們的資料第一次證明了辛伐他汀通過PLA₂信號通路變構啟動鈣敏感受體來保護obese/diabetic (db⁺/db⁺)胰島β細胞(比如:恢復葡萄糖引發的胰島素分泌和提高減少的胰島素含量),還通過提高obese/diabetic (db⁺/db⁺)胰島β細胞中被抑制的ER-stress相關蛋白的表達量來抵抗ER-stress帶來的損傷。 / Diabetics often have hyperlipidemia as a co-morbidity. Despite the well-documented cholesterol-lowering properties of 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG CoA) reductase inhibitors (statins) in treating hypercholesterolemia, the beneficial effects of statins consumption in T2DM treatment are confusing. In the current study, we examined the effects of the simvastatin (10 nM; 24 hr) on β-cell function leading to insulin secretory response to glucose. We hypothesized that statins restore the blunted glucose (5 mM and 15 mM)-induced insulin secretion (plus the reduced insulin content) of isolated pancreatic islets of obese/diabetic (db⁺/db⁺) mice. / In the present study, genetically diabetic C57BL/KSJ +db/+db (db⁺/db⁺) mice at 24 week of age and their age-matched non-diabetic littermates C57BL/KSJ +m/+m (db⁺/m⁺) were used. Our results clearly showed that the suppressed glucose (5 mM and 15 mM)-induced insulin release (plus insulin content) and glucose (15 mM)-induced [Ca²⁺]i changes of isolated pancreatic islets of obese/diabetic (db⁺/db⁺) was restored after simvastatin (10 nM; 24 hr) treatment. / The biochemical existence of CaR in pancreatic islets of lean/non-diabetic (db⁺/m⁺) and obese/diabetic (db⁺/db⁺) mice was confirmed. The suppressed/down-regulated expression of CaR was associated to the blunted insulin secretion in pancreatic β-cells of obese/diabetic (db⁺/db⁺) mice, and it was markedly up-regulated by simvastatin (10 nM; 24 hr). The involvement of CaR-mediated PLA₂ signaling in simvastatin (10 nM; 24 hr)-induced restoration of glucose (15 mM)-induced insulin secretion in pancreatic β-cells of obese/diabetic (db⁺/db⁺) mice was investigated. Our results also showed that the increased density of plasma membrane actin cytoskeleton of obese/diabetic (db⁺/db⁺) mice was significantly decreased by simvastatin (10 nM; 24 hr) treatment. The simvastatin-induced depolymerization and remodeling of actin cytoskeleton may improve insulin secretion capability in pancreatic β-cells of obese/diabetic (db⁺/db⁺) mice. / The glucose (15 mM)-induced intracellular ROS level was significantly higher in pancreatic β-cells of obese/diabetic (db⁺/db⁺) mice. The elevated ROS level was partially diminished by simvastatin (10 nM; 24 hr) treatment. The protein expressions of PERK and eIF2α (ER stress proteins) were lower in pancreatic islet cells isolated from obese/diabetic (db⁺/db⁺) mice, suggesting that abnormal expresstion/activity of PERK and eIF2α would be coupled to the ER-stress mediated failure of pancreatic β-cells of obese/diabetic (db⁺/db⁺) mice. As simvastatin (10 nM; 24 hr) up-regulated the protein expression of these proteins, this drug exerted protective effect on pancreatic β-cells against ER stress and restored the blunted glucose (15 mM)-induced insulin secretion (plus the reduced insulin content) in obese/diabetic (db⁺/db⁺) mice. / In conclusion, our results demonstrate, for the first time, that simvasatatin (a HMG-CoA reductase inhibitor) (10 nM; 24 hr) provides beneficial effects (i.e. restoration of the blunted glucose-induced insulin release plus the reduced insulin content) in pancreatic β-cells of obese/diabetic (db⁺/db⁺) mice via the allosteric modification/up-regulation of extracellular calcium-sensing receptor through the PLA₂ signaling pathway, and provides protective/antioxidant effects against oxidative stress caused by chronic hyperglycemia in pancreatic β-cells of obese/diabetic (db⁺/db⁺) mice by up-regulating protein expression of the suppressed ER stress sensors and antioxidant enzyme. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Au, Lai Shan. / Thesis (Ph.D.) Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 458-532). / Abstracts also in Chinese.
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_1077678 |
Date | January 2013 |
Contributors | Au, Lai Shan (author.), Kwan, Yiu Wa (thesis advisor.), Chinese University of Hong Kong Graduate School. Division of Biomedical Sciences, (degree granting institution.) |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography, text |
Format | electronic resource, electronic resource, remote, 1 online resource (xxiii, 532 leaves) : illustrations (some color), computer, online resource |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0105 seconds