Return to search

Sorpce směsí kovových iontů na přírodním lignitu / Sorption of metal ions mixture on natural lignite

Sorption of quaternary metal ions (Pb2+, Cu2+, Cd2+ and Zn2+) was carried out on lignite from the South Moravia. Following experiments were tested: kinetic sorption, dependence of sorption on pH, initial concentration, temperature, effect of electrolytes (KNO3 and NaCl) and desorption in deionized water. Sorption studies was carried out in quaternary mixtures and in the case of inicial concentration effect additional in a single-component solution. The batch sorption experiments was used. Sorption time was 24 hour, although concentration of ions was a near equilibrium after two hour. As the optimal pH was determined pH 5. The order of affinity by lignite was obtained Pb >> Cd > Zn > Cu for the sorption of metals in the single-component solution and the order was Pb > Cu > Zn > Cd for the sorption of mixture of metals. The maximum adsorptium capacities from single solutions were for Pb 97,82 mg/g, Cd 60,34 mg/g, Zn 49,88 mg/g and Cu 30,28 mg/g and in the case of ones from mixture solutions were for Pb 39,03 mg/g, Cu 25,94 mg/g, Zn 15,21 mg/g and Cd 5,18 mg/g. Experimental data have been analysed using Langmuir and Freundlich model. Thermodynamic values H°, S° and G° were calculated. Desorption test showed that desorption efficiency is 0–3 %. NaCl had the greatest influence on sorption from electrolytes. On the basis obtained results we can say that metals are binding to lignite in particular due to chemical interactions. Lignite is s suitable as a sorption material for metal ions especially in the field of low concentrations.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:216524
Date January 2009
CreatorsDoskočil, Leoš
ContributorsTaraba, Boleslav, Pekař, Miloslav
PublisherVysoké učení technické v Brně. Fakulta chemická
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0184 seconds