Protein bars have become a popular option among consumers to increase protein content in their diets. Since there is a large market for protein bars, many factors must be considered when creating a protein bar that both satisfies consumers and has a long shelf-life. Hardening and textural changes in protein bars are some of the most common modes of shelf-life failure in this product category. When the typical product creation timeline from formulation to launch can be as short as 3-6 months and with added pressure from executives to quickly launch another new product afterwards, product development scientists simply do not have time to test the full shelf life of their product before release. For this reason, it is imperative that rapid methods for detecting bar hardness and predicting shelf life of bar formulations are developed. The objective of this research is to utilize calorimetric techniques to rapidly detect and identify bar hardening reactions. Six different protein bar formulations were studied, with each containing a combination of either whey protein isolate (WPI), milk protein isolate (MPI), or partially hydrolyzed whey protein isolate (HWPI), reducing-sugar, non-reducing sugar, and vegetable shortening. All bars were stored at 45°C and ambient humidity for 21 d. Isothermal microcalorimetry (IMC) was used to evaluate bar hardening-related reactions and was compared to objective and subjective hardness measurements. Hardness, color, water activity, moisture content, and sensory evaluation were measured at d 1, 7, 14, and 21. The results of this study indicate that isothermal calorimetry may be used to narrow down bar hardening reactions and points to Maillard browning as a main driver of hardening. These techniques may be used to predict bar shelf life, if Maillard browning is used as the basis for hardening. Furthermore, this research highlights the importance of ingredient selection during bar formulation to minimize hardening.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-11221 |
Date | 07 December 2023 |
Creators | Spackman, Tiffany Rose |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | https://lib.byu.edu/about/copyright/ |
Page generated in 0.0015 seconds