This thesis involves the design, synthesis and testing of organic hydrophobic ligands. They would act as co-collectors in froth flotation processes to enhance the recovery of sulfidic minerals which have undergone some oxidation on processing and are not efficiently collected by the commercial reagents used in froth flotation. Strong and selective binding to iron(III) oxide/hydroxide surfaces, e.g. goethite, over unwanted silicaceous material was considered essential criteria for such new cocollectors. A general overview of froth flotation processes is given in Chapter 1 as well as a description of the analytical techniques used in this thesis and the features that the ligands must have to act as co-collectors. On the basis of the strong binding to iron(III) surfaces of the organic ligand Irgacor 419®, used commercially as a corrosion inhibitor for iron, this compound was studied as a potential co-collector. Adsorption isotherms were determined by UV-Vis spectroscopy for two carboxylic acids that may also bind strongly to goethite, the results of which are discussed in Chapter 2. Chapter 3 involves the measurement of the strength of binding of one the most widely used type of collectors for sulfide ores, potassium ethyl xanthate. Complications in the analysis of materials in solution by both ICP-OES and UV-Vis spectroscopy arose due to the instability of potassium ethyl xanthate in solution, making determination and interpretation of isotherms difficult. The determination of adsorption isotherms for 2-mercaptobenzothiazole, which showed weak binding to goethite as well as to silica, and the mode of binding of 2-mercaptobenzothiazole on copper(I) surfaces is reported in Chapter 4. A crystal structure was obtained in which four units of 2-mercaptobenzothiazole bridge two nickel atoms through the nitrogen atom and the exocyclic sulfur and is considered as a model for binding to sulfidic minerals. Chapter 5 looks at the strength of binding to goethite and silica of various hydroxamic acids. Benzohydroxamic acid was initially selected for study since hydroxamates are known to act as collectors for oxidized materials. Unpredictably, benzohydroxamic acid showed strong binding to a goethite surface and did not release any iron from the surface into solution, which would have been predicted due to its known strong chelating abilities to iron(III). The X-ray structure determination of the first example of a dinuclear Fe(III) hydroxamate complex showed this to have -oxo bridge formed by the hydroxamate unit and supports multisite attachment between this ligand and the surface, as suggested by adsoption isotherms. Simple models based on this dinucleating motif provide plausible modes of multisite attachment to a goethite surface. Competitive binding studies provided a way of ranking the ability to bind to goethite of acetohydroxamic acid, which was not suitable for analyses by either ICP-OES or UV-Vis spectroscopy. Of the ligands studied in this chapter acetohydroxamic acid was found to bind most strongly to goethite followed by benzohydroxamic acid. In Chapter 6, the attachment to goethite and silica of a series of phosphonic acids is investigated. All show a very high binding strength to goethite. Froth flotation experiments at a laboratory scale are described in Chapter 7. The types of ligand that showed strong binding to goethite in adsorption isotherms experiments were tested as co-collectors in different ores and conditions. There is not a simple correlation between adsorption isotherm data and flotation performance as co-collectors because other factors, besides strength of binding, affect the system. Benzohydroxamic acid was the ligand that increased the grade/recovery of the process in all the cases studied. Irgacor 419® enhances the grade/recovery curve for Palabora ore and phenyl malonic acid for Kennecott ore. These results support the original proposition that it may be possible to increase the recovery of oxidized particles substantially by using a blend of collectors which includes a compound to target the oxidized sites.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:562122 |
Date | January 2007 |
Creators | Rio Echevarria, Iria M. |
Contributors | Tasker, Peter |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/3457 |
Page generated in 0.0132 seconds