The statistical practice of equating is needed when scores on different versions of the same standardized test are to be compared. This thesis constitutes four contributions to the observed-score equating framework kernel equating. Paper I introduces the open source R package kequate which enables the equating of observed scores using the kernel method of test equating in all common equating designs. The package is designed for ease of use and integrates well with other packages. The equating methods non-equivalent groups with covariates and item response theory observed-score kernel equating are currently not available in any other software package. In paper II an alternative bandwidth selection method for the kernel method of test equating is proposed. The new method is designed for usage with non-smooth data such as when using the observed data directly, without pre-smoothing. In previously used bandwidth selection methods, the variability from the bandwidth selection was disregarded when calculating the asymptotic standard errors. Here, the bandwidth selection is accounted for and updated asymptotic standard error derivations are provided. Item response theory observed-score kernel equating for the non-equivalent groups with anchor test design is introduced in paper III. Multivariate observed-score kernel equating functions are defined and their asymptotic covariance matrices are derived. An empirical example in the form of a standardized achievement test is used and the item response theory methods are compared to previously used log-linear methods. In paper IV, Wald tests for equating differences in item response theory observed-score kernel equating are conducted using the results from paper III. Simulations are performed to evaluate the empirical significance level and power under different settings, showing that the Wald test is more powerful than the Hommel multiple hypothesis testing method. Data from a psychometric licensure test and a standardized achievement test are used to exemplify the hypothesis testing procedure. The results show that using the Wald test can provide different conclusions to using the Hommel procedure.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-234618 |
Date | January 2014 |
Creators | Andersson, Björn |
Publisher | Uppsala universitet, Statistiska institutionen, Uppsala |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Social Sciences, 1652-9030 ; 106 |
Page generated in 0.002 seconds