Le développement des microbatteries au lithium est freiné par leur coût de production élevé, associé à leur procédé de fabrication par des techniques de dépôt physique en phase vapeur. L’objectif de cette thèse a été de développer de nouveau matériaux et procédés pour diminuer le coût de fabrication des microbatteries au lithium. L’impression jet d’encre est un procédé de fabrication de couches minces rapide, peu onéreux et qui permet un dépôt précis et reproductible. Nous avons donc cherché à élaborer ici des matériaux pour batterie tout-solide au lithium qui soit imprimable. Un électrolyte a été particulièrement développé dans ce but pour qu’il soit imprimable, solidifiable après dépôt et intégrable dans une batterie, c’est-à-dire permettant son bon fonctionnement. Les ionogels apparaissent répondre parfaitement à ce cahier des charges. Ce sont des liquides ioniques (sels fondus à température ambiante) confinés dans une matrice qui leur confère un caractère solide. Ils possèdent de bonnes propriétés de conduction ionique, de bonnes stabilités thermique et électrochimique. Nous avons donc formulé des ionogels par confinement d’un liquide ionique dopé avec un sel de lithium dans une matrice polymère obtenue par la photopolymérisation de monomères dissous dans le liquide ionique. Les propriétés physiques et électrochimiques de ces ionogels ont été étudiées, ainsi que leur compatibilité avec différents matériaux d’électrode dense ou composite poreuse (lithium, LiCoO2, LiFePO4). Des prototypes de microbatteries imprimées pour partie ont été assemblés et cyclés jusqu’à jusqu’à plus de 1000 cycles. / The developpement of lithium microbatteries is hampered by their high production cost, which is due to their manufacturing process by physical vapor deposition techniques. The objective of this thesis was to develop new materials and processes to reduce the manufacturing cost of lithium microbatteries. Inkjet printing is a fast, inexpensive thin-film manufacturing process that allows accurate and reproducible deposition. We have therefore endeavored here to develop materials for a lithium-based all-solid battery that is printable. An electrolyte has been particularly developed for this purpose. It is printable, can be made solid after deposition, and can be integrated into a battery, that is to say it allows its proper functioning. The ionogel appeared to meet this specification perfectly. They are ionic liquids (salts melted at room temperature) confined in a matrix which give them a solid character. They have good ionic conduction properties, good thermal and electrochemical stabilities. We have thus formulated ionogels by confinement of an ionic liquid doped with a lithium salt in polymer matrix obtained by the photopolymerization of monomers dissolved in the ionic liquid. The physical and electrochemical properties of theses ionogels have been studied, as well as their compatibility with different dense or porous composite electrode materials (lithium, , LiCoO2, LiFePO4). Prototypes of microbatteries printed in part have been assembled and cycled for more than 1000 cycles.
Identifer | oai:union.ndltd.org:theses.fr/2017NANT4064 |
Date | 20 October 2017 |
Creators | Aidoud, Djamel |
Contributors | Nantes, Lestriez, Bernard, Le Bideau, Jean |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds