Return to search

Regulation der Jasmonatbiosynthese durch Lipasen in Arabidopsis thaliana / Regulation of the biosynthesis of jasmonates by lipases in Arabidopsis thaliana

Lipasen regulieren die Biosynthese von Jasmonaten, die eine elementare Signalfunktion bei der Entwicklung von Pflanzen und der Abwehr von Pathogenen haben. Entsprechend dem klassischen „Vick-Zimmerman-Pathway“ dienen die aus Galaktolipiden freigesetzten Fettsäuren α-18:3 und 16:3 als Substrate der Jasmonsäure (JA)-Synthese. In den letzen zehn Jahren wurden jedoch die Intermediate der JA-Biosynthese 12-Oxo-Phytodiensäure (OPDA, ausgehend von α-18:3) und Dinor-12-Oxo-Phytodiensäure (dnOPDA, ausgehend von 16:3) verestert in Galaktolipiden der Art Arabidopsis thaliana nachgewiesen. Die Biosynthese und die mögiche Speicherfunktion dieser komplexen, als Arabidopside bezeichneten, Lipide war jedoch noch unklar. In der Literatur wird ein alternativer Syntheseweg postuliert, in dem analog zum klassischen „Vick-Zimmerman-Pathway“ die Biosynthese von veresterter OPDA/dnOPDA ausgehend von veresterter α-18:3/16:3 vollständig in Galaktolipiden der Pastidenmembran stattfindet. Nach Freisetzung von OPDA/dnOPDA durch eine Lipase könnten OPDA/dnOPDA dann als Intermediate in die JA-Biosynthese einfliessen. Sowohl im klassischen „Vick-Zimmerman-Pathway“ als auch im postulierten alternativen Syntheseweg ist die Aktivität von Lipasen von essentieller Bedeutung für die JA-Biosynthese. Für zwei plastidäre sn1-spezifische Acyl-Hydrolasen, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) und DONGLE (DGL), wurde eine zentrale Funktion innerhalb der Jasmonat-Biosynthese in Blättern von A. thaliana beschrieben. Dem zufolge ist DGL für die basalen und die frühen wundinduzierten JA-Gehalte und DAD1 für die Aufrechterhaltung der erhöhten JA-Konzentrationen in der späteren Verwundungsantwort verantwortlich. In der vorliegenden Arbeit wiesen drei unabhängige DGL-RNAi-Linien sowie DAD1-Knock-out-Mutanten sowohl unter basalen Bedingungen als auch zu frühen Zeitpunkten nach Verwundung sowie nach Infektion mit dem Bakterienstamm P. syringae DC3000 (avrRPM1) mit dem Wildtyp vergleichbare Konzentrationen an OPDA/JA auf. Dies steht im klaren Widerspruch zu den publizierten Daten. Die Beteiligung von DAD1 an der OPDA/JA-Biosynthese zu späten Zeitpunkten nach Verwundung konnte jedoch bestätigt werden. Ferner konnte eine dramatische Über-Akkumulation von Arabidopsiden in DAD1-defizienten Mutanten nach Verwundung nachgewiesen werden, was auf eine Beteiligung von DAD1 bei der Freisetzung von membrangebundener OPDA/dnOPDA hinweist. Die Analyse der Einzelmutanten 16 weiterer plastidärer Lipasen unter basalen Bedingungen, nach Verwundung und nach Infektion mit P. syringae DC3000 (avrRPM1) zeigte, dass keine der analysierten Mutanten eine essentielle Rolle in der JA-Biosynthese spielt. Jedoch wiesen Mutanten der sn1-spezifischen Lipasen AtPLA1-Iγ1 (At1g06800) signifikant niedrigere Konzentrationen an dnOPDA, OPDA und JA nach Verwundung auf, was eine indirekte Beteiligung an der JA-Biosynthese vermuten lässt. Blattgewebe einer Quadrupel-Mutanten, welche defizient in vier DAD1-ähnlichen Lipasen (AtPLA1-Iβ2, AtPLA1-Iγ1, AtPLA1-Iγ2, AtPLA1-Iγ3) ist, wies nach Verwundung mit der AtPLA1-Iγ1-Mutante vergleichbar niedrige Gehalte an dnOPDA, OPDA sowie JA auf. Da stets in sn2-Position vorliegende 16:3/dnOPDA ebenfalls Substrat der JA-Biosynthese sein kann, müssen zusätzlich zu DAD1 und AtPLA1-Iγ1 noch weitere nicht identifizierte sn1- und sn2-spezifische Acyl-Hydrolasen an der JA-Biosynthese nach Verwundung und Pathogeninfektion beteiligt sein. Dies bedeutet, dass entgegen der in der Literatur vertretenen Meinung, nicht eine sondern mehrere Lipasen in redundanter Weise die Biosynthese von Jasmonaten regulieren. Zur Aufklärung der Biosynthese und möglichen Speicherfunktion der ausschließlich in Arabidopsis vorkommenden Arabidopside wurden A. thaliana Keimlinge mit D5-Linolensäure-Ethylester inkubiert, um eine D5-Markierung der komplexen Lipide zu erzielen. Durch einen anschließenden Stressstimulus mittels Zugabe von Silbernitrat wurde die Jasmonat-Synthese induziert. Die vergleichende Analyse der Markierungsgrade der komplexen Membranlipide MGDG, DGDG, PC sowie der freien OPDA und JA vor und nach Zugabe des Silbernitrats zeigte, eine hohe Übereinstimmung der Markierungsgrade der komplexen Membranlipide 18:3-18:3-MGDG, 18:3-OPDA-MGDG, Arabidopsid B (MGDG-OPDA-OPDA) und Arabidopsid G (OPDA-MGDG-OPDA-OPDA) vor der Silbernitratbehandlung mit denjenigen der durch Silbernitratbehandlung neu gebildeten OPDA/JA. Dagegen wird die hochmarkierte freie Linolensäure nicht direkt zu freier OPDA umgesetzt. Die erhaltenen Ergebnisse zeigen, dass 18:3-OPDA-MGDG, Arabidopsid B und Arabidopsid G direkte Vorstufen von freier OPDA sein können. Damit übereinstimmend konnte gezeigt werden, dass nach Silbernitratstress die Spiege der Vorstufe 18:3-18:3-MGDG abnehmen und zeitgleich die entsprechenden unmittelbaren Metabolite 18:3-OPDA-MGDG, Arabidopsid B und Arabidopsid G akkumulieren. / Lipases regulate the biosynthesis of jasmonates. Jasmonates have an essential role in the development and defense of plants. According to the classical „Vick-Zimmerman-Pathway“ α-18:3/16:3 released by hydrolases out of galactolipids serve as substrate for the biosynthesis of jasmonic acid. In the last ten years also the metabolites of the biosynthesis of jasmonic acid OPDA (derived from α-18:3) and dnOPDA (derived from 16:3) were found to be esterified in galactolipids of arabidopsis. The synthesis and function of these complex lipids, named arabidopsides, is yet not known. An alternative Pathway is postulated in the literature. According to this the synthesis of dnOPDA/OPDA takes place in galactolipids. Free dnOPDA/OPDA released by hydrolases may then serve as substrates for the biosynthesis of jasmonic acid. In the classical „Vick-Zimmerman-Pathway“ as well as in the alternative Pathway the activity of lipases have an essential impact on the biosynthesis of jasmonates. Two plastidic acyl-hydrolases with sn1-substrate specificity, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) and DONGLE (DGL), were published to have a essential role in the biosynthesis of jasmonates in leaves of Arabidopsis thaliana. DGL should be responsible for the formation of jasmonic acid under basal conditions and at early timepoints after wounding, DAD1 should maintain the elevated concentrations of jasmonic acid at later timepoints after wounding. In this work the involvement of DAD1 in the biosynthesis of OPDA/JA at later timepoints after wounding was confirmed. However, no differences could be detected in three independent DGL-RNAi-lines and DAD1-knock-out-mutants in comparison to the wild type under basal conditions and at early timepoints after wounding which is contradictory to the published data. In addition, in these mutants wild type oxylipin levels were found after infection with an avirulent bacterial strain of Pseudomonas syringae. Furthermore DAD1-deficient mutants displayed dramatic accumulation of arabidopsides at later timepoints after wounding. Therefore it is suspected that DAD1 is responsible for the release of OPDA esterified in galactolipids. The analysis of single mutants of 16 additional lipases localised in plastids showed no strong differences in comparison to the wildtype under basal conditions, after wounding as well as after infection with P. syringae. Hence, none of the tested lipases plays an essential role in the biosynthesis of jasmonates. However mutants of the sn1-specific acyl-hydrolase AtPLA1-Iγ1 (At1g06800) showed significant lower concentrations of dnOPDA, OPDA and JA after wounding in comparison to the wildtype. This indicates an involvement of AtPLA1-Iγ1 in the biosynthesis of jasmontes. A quadruple mutant defective in four DAD1-like lipases (AtPLA1-Iβ2, AtPLA1-Iγ1, AtPLA1-Iγ2, AtPLA1-Iγ3) displayed jasmonate levels similar to the mutant line of AtPLA1-Iγ1 after wounding. The lipids 16:3/dnOPDA are always esterified in sn2 position of glycerolipids. Furthermore 16:3/dnOPDA may also serve as substrates for the biosynthesis of jasmonic acid. The results suggest that, in addition to DAD1 and AtPLA1-Iγ1, still unidentified enzymes with sn1- and sn2-hydrolase activity are involved in wound- and pathogen-induced jasmonate formation, indicating functional redundancy within the lipase family. To clarify the biosynthesis and storage function of arabidopsides, seedlings of A.thaliana were incubated with D5-linolenic acid ethyl ester to produce labelling of complex membrane lipids. Subsequent application of silver nitrate induced the biosynthesis of jasmonates. The analysis of the complex lipids MGDG, DGDG, PC as well as OPDA/JA before and after treatment with silver nitrate showed a high consistency of labelling of the complex lipids 18:3-18:3-MGDG, 18:3-OPDA-MGDG, arabidopside B (OPDA-OPDA-MGDG) as well as arabidopside G (OPDA-OPDA-MGDG-OPDA) before application of silver nitrate with labelling of the newly synthesised OPDA/JA induced by treatment with silver nitrate. The results suggest, that MGDG-18:3-18:3, 18:3-OPDA-MGDG, arabidopsid B and arabidopsid G are precursors or metabolites of free OPDA, which is a precursor of JA. Furthermore, simultaneous decrease of 18:3-18:3-MGDG and concomitant increase of arabidopsid B and arabidopsid G after application of silver nitrate could be shown. This suggests synthesis of OPDA/dnOPDA in-situ via the alternative pathway.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:4798
Date January 2011
CreatorsStingl, Nadja
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0112 seconds