Nous étudions plusieurs problèmes de coloration dans les graphes, pour certains avec une composante ludique. La coloration à distance 2 d'un graphe est une coloration de ses sommets telle que deux sommets à distance au plus 2 ont des couleurs différentes. Le L(p; q)-étiquetage est une généralisation de ce problème ou les contraintes à distance 1 et 2 sont différentes. Nous donnons des résultats pour ces deux problèmes dans plusieurs classes de graphes peu denses (ayant un faible degré moyen maximum).Le jeu de coloration sur un graphe est un jeu ou deux joueurs, Alice et Bob, colorent tour à tour un des sommets non coloriés d'un graphe, construisant ainsi une coloration propre partielle de plus en plus étendue de ce graphe. Alice tente d'étendre la coloration à l'ensemble du graphe, et Bob tente de l'en empêcher. Nous travaillons sur un invariant de graphe, le degré minmax, dont l'étude permet de déduire des résultats pour le jeu de coloration via l'étude d'un problème structurel, la (1; k)-décomposition d'un graphe, c'est-à-dire la partition de ses arêtes en une forêt et un sous-graphe de degré inférieur ou égal à k.Nous travaillons enfin sur une variante du jeu de coloration nommée jeu de coloration d'incidences, ou Alice et Bob colorient les incidences d'un graphe, pour lequel nous donnons une stratégie efficace pour Alice.Enfin, tout au long de notre mémoire, nous étudions les liens entre la notion de coloration est celle de marquage. Un marquage est un ordre sur les sommets (ou arêtes, ou incidences...) d'un graphe possédant des caractéristiques utiles pour le colorer. Pour nos différents problèmes, nous questionnons l'utilité ou les limites de l'usage de cette notion. / We study several problems of graph coloring, some of them with a game component.A 2-distance coloring of a graph is a vertex coloring where two vertices at distanceat most two have different colors. A L(p; q)-labeling is a generalisation of the distance-2coloring where constraints are different at distance 1 and 2. We give results for thesetwo problems in several classes of sparse graphs (with a low maximal average degree).The coloring game on a graph is a game where two players, Alice and Bob, taketurns coloring an uncolored vertex of the graph, constructing together a proper partialcoloring of the graph extending as time moves on. Alice try to extend the coloringto the whole graph, and Bob try to prevent her to win. We study a graph invariant,the minmax degree, who has consequences on the coloring game through the notion of(1; k)-decomposition of a graph, which is the partition of its edge set into a forest and asubgraph of degree bounded by k.We finally study a variant of the coloring game named incidence coloring game, whereAlice and Bob are coloring the incidences of a graph, and for which we give an efficientstrategy for Alice.Finally, during our thesis, we study the connections between coloring and marking,which is an order on the vertices of a graph (or its edges, or its incidences) havingproperties usefull for its coloring. For our problems, we try to determine the utility andthe limits of a marking-based approach of coloring problems.
Identifer | oai:union.ndltd.org:theses.fr/2014BORD0023 |
Date | 19 March 2014 |
Creators | Charpentier, Clément |
Contributors | Bordeaux, Raspaud, André, Montassier, Mickaël |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds