Return to search

Carbon nanotube synthesis and detection : limiting the environmental impact of novel technologies / Limiting the environmental impact of novel technologies

Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering; and the Woods Hole Oceanographic Institution), 2009. / Includes bibliographical references. / Driven by commercial promise, the carbon nanotube (CNT) industry is growing rapidly, yet little is known about the potential environmental impacts of these novel materials. In particular, there are no methods to detect CNTs in environmental matrices (e.g.,sediment) and thus, there is no way to study their transport or gauge ecological exposure. Thermal methods were developed to quantify CNTs in coastal sediments down to 10 ug per sample, which is sufficient to for CNTs in laboratory air, but not sufficient to measure contemporary levels of CNTs in the environment (which were estimated to be present at pg g' sediment levels using a dynamic mass balance model). In addition to the CNTs themselves, potential impacts of CNT production were assessed by monitoring emissions from a representative synthesis. An ethene-fed chemical vapor deposition process generated several compounds of environmental concern, including the greenhouse gas, methane, the hazardous pollutants, benzene and 1,3-butadiene, and toxic polycyclic aromatic hydrocarbons. By identifying critical CNT precursors (alkynes), I delivered these compounds without thermal pre-treatment and achieved rapid CNT growth. This approach reduced carbonaceous emissions by more than an order of magnitude, and lowered initial feedstock requirements and energetic demands by at least 20%, without sacrificing CNT yield. / by Desirée L. Plata. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/53118
Date January 2009
CreatorsPlata, Desirée L
ContributorsPhilip M. Gschwend and Christopher M. Reddy., Woods Hole Oceanographic Institution., Joint Program in Oceanography/Applied Ocean Science and Engineering, Woods Hole Oceanographic Institution, Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format224 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0019 seconds