Return to search

Modifiable stability and maneuverability of high speed unmanned underwater vehicles (UUVs) through bioinspired control fins

Thesis: S.M., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), September, 2020 / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (pages 73-74). / Underwater Vehicles generally have control fins located only near their aft end, for making controllable changes in directions. This design allows for stability of control; however, the turns are typically large in comparison to the vehicle body length. Some bony fish, such as tuna, on the other hand, have deployable ventral and dorsal fins located towards the front of their body, in addition to their other fins. Their deployable fins allow them to modulate their hydrodynamic behavior in response to their environment. Tunas keep these fins retracted during steady cruising, and then deploy them during rapid maneuvers. However, the details of these hydrodynamic effects are not well understood. To investigate this phenomena, using a REMUS 100 as a model, a pair of vertical fins was added at different hull positions, to investigate the effects of fin location on the horizontal plane hydrodynamics, through: stability parameters, nonlinear simulation, and towing tank experiments. Depending on the added fin location, the stability of the vehicle changed, thereby affecting the maneuverability. As fins were placed further forward on the vehicle, maneuverability increased, with effects tapering off at 0.2 BL ahead of the vehicle's center of buoyancy. This investigation explored how rigid underwater vehicles could benefit from added fins, without drastically changing the design of current vehicles. / by Nastasia Elizabeth Winey. / S.M. / S.M. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution)

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/129025
Date January 2020
CreatorsWiney, Nastasia Elizabeth.
ContributorsMichael Triantafyllou and Dana Yoerger., Joint Program in Oceanography/Applied Ocean Science and Engineering., Massachusetts Institute of Technology. Department of Mechanical Engineering., Woods Hole Oceanographic Institution., Joint Program in Oceanography/Applied Ocean Science and Engineering, Massachusetts Institute of Technology. Department of Mechanical Engineering, Woods Hole Oceanographic Institution
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format74 pages, application/pdf
RightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.007 seconds