Return to search

Slip on ridge transform faults : insights from earthquakes and laboratory experiments / Slip on RTFs : insights from earthquakes and laboratory experiments

Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2005. / Includes bibliographical references (p. 117-128). / The relatively simple tectonic environment of mid-ocean ridge transform fault (RTF) seismicity provides a unique opportunity for investigation of earthquake and faulting processes. We develop a scaling model that is complete in that all the seismic parameters are related to the RTF tectonic parameters. Laboratory work on the frictional stability of olivine aggregates shows that the depth extent of oceanic faulting is thermally controlled and limited by the 600⁰C isotherm. Slip on RTFs is primarily aseismic, only 15% of the tectonic offset is accommodated by earthquakes. Despite extensive fault areas, few large earthquakes occur on RTFs, and few aftershocks follow the large events. Standard models of seismicity, in which all earthquakes result from the same seismic triggering process, do not describe RTF earthquakes. Instead, large earthquakes appear to be preceded by an extended fault preparation process marked by abundant foreshocks within 1 hour and 15 km of the main- shocks. In our experiments normal force vibrations, such as seismic radiation from nearby earthquakes, can weaken and potentially destabilize steadily creeping faults. / (cont.) Integrating the rheology, geology, and seismicity of RTFs, we develop a synoptic model to better understand the spatial distribution of fault strength and stability and provide insight into slip accommodation on RTFs. / by Margaret S. Boettcher. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/33583
Date January 2005
CreatorsBoettcher, Margaret S
ContributorsThomas H. Jordan, Jeffrey J. McGuire and Gregory Hirth., Woods Hole Oceanographic Institution., Joint Program in Oceanography, Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences., Woods Hole Oceanographic Institution., Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format128 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/33583, http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0012 seconds