In the future, robots will become our companions and co-workers. They will gradually appear in our environment, to help elderly or disabled people or to perform repetitive or unsafe tasks. However, we are still far from a real autonomous robot, which would be able to act in a natural, efficient and secure manner with humans. To endow robots with the capacity to act naturally with human, it is important to study, first, how humans act together. Consequently, this manuscript starts with a state of the art on joint action in psychology and philosophy before presenting the implementation of the principles gained from this study to human-robot joint action. We will then describe the supervision module for human-robot interaction developed during the thesis. Part of the work presented in this manuscript concerns the management of what we call a shared plan. Here, a shared plan is a a partially ordered set of actions to be performed by humans and/or the robot for the purpose of achieving a given goal. First, we present how the robot estimates the beliefs of its humans partners concerning the shared plan (called mental states) and how it takes these mental states into account during shared plan execution. It allows it to be able to communicate in a clever way about the potential divergent beliefs between the robot and the humans knowledge. Second, we present the abstraction of the shared plans and the postponing of some decisions. Indeed, in previous works, the robot took all decisions at planning time (who should perform which action, which object to use…) which could be perceived as unnatural by the human during execution as it imposes a solution preferentially to any other. This work allows us to endow the robot with the capacity to identify which decisions can be postponed to execution time and to take the right decision according to the human behavior in order to get a fluent and natural robot behavior. The complete system of shared plans management has been evaluated in simulation and with real robots in the context of a user study. Thereafter, we present our work concerning the non-verbal communication needed for human-robot joint action. This work is here focused on how to manage the robot head, which allows to transmit information concerning what the robot's activity and what it understands of the human actions, as well as coordination signals. Finally, we present how to mix planning and learning in order to allow the robot to be more efficient during its decision process. The idea, inspired from neuroscience studies, is to limit the use of planning (which is adapted to the human-aware context but costly) by letting the learning module made the choices when the robot is in a "known" situation. The first obtained results demonstrate the potential interest of the proposed solution.
Identifer | oai:union.ndltd.org:univ-toulouse.fr/oai:oatao.univ-toulouse.fr:19921 |
Date | 03 November 2017 |
Creators | Devin, Sandra |
Contributors | Institut National Polytechnique de Toulouse - INPT (FRANCE), Laboratoire d'Analyse et d'Architecture des Systèmes - LAAS (Toulouse, France) |
Source Sets | Université de Toulouse |
Language | English |
Detected Language | English |
Type | PhD Thesis, PeerReviewed, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | http://oatao.univ-toulouse.fr/19921/ |
Page generated in 0.002 seconds