Return to search

Chaotic advection, mixing, and property exchange in three-dimensional ocean eddies and gyres

Thesis: Ph. D., Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2018. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 259-268). / This work investigates how a Lagrangian perspective applies to models of two oceanographic flows: an overturning submesoscale eddy and the Western Alboran Gyre. In the first case, I focus on the importance of diffusion as compared to chaotic advection for tracers in this system. Three methods are used to quantify the relative contributions: scaling arguments including a Lagrangian Batchelor scale, statistical analysis of ensembles of trajectories, and Nakamura effective diffusivity from numerical simulations of dye release. Through these complementary methods, I find that chaotic advection dominates over turbulent diffusion in the widest chaotic regions, which always occur near the center and outer rim of the cylinder and sometimes occur in interior regions for Ekman numbers near 0.01. In thin chaotic regions, diffusion is at least as important as chaotic advection. From this analysis, it is clear that identified Lagrangian coherent structures will be barriers to transport for long times if they are much larger than the Batchelor scale. The second case is a model of the Western Alboran Gyre with realistic forcing and bathymetry. I examine its transport properties from both an Eulerian and Lagrangian perspective. I find that advection is most often the dominant term in Eulerian budgets for volume, salt, and heat in the gyre, with diffusion and surface fluxes playing a smaller role. In the vorticity budget, advection is as large as the effects of wind and viscous diffusion, but not dominant. For the Lagrangian analysis, I construct a moving gyre boundary from segments of the stable and unstable manifolds emanating from two persistent hyperbolic trajectories on the coast at the eastern and western extent of the gyre. These manifolds are computed on several isopycnals and stacked vertically to construct a three-dimensional Lagrangian gyre boundary. The regions these manifolds cover is the stirring region, where there is a path for water to reach the gyre. On timescales of days to weeks, water from the Atlantic Jet and the northern coast can enter the outer parts of the gyre, but there is a core region in the interior that is separate. Using a gate, I calculate the continuous advective transport across the Lagrangian boundary in three dimensions for the first time. A Lagrangian volume budget is calculated, and challenges in its closure are described. Lagrangian and Eulerian advective transports are found to be of similar magnitudes. / by Genevieve Elizabeth Brett. / Ph. D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/117913
Date January 2018
CreatorsBrett, Genevieve Elizabeth
ContributorsLarry Pratt and Irina Rypina., Woods Hole Oceanographic Institution., Joint Program in Physical Oceanography, Woods Hole Oceanographic Institution, Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format268 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0014 seconds