High pressure (HP) processing, a novel technology, has excellent potential for non-thermal preservation of apple juice, the largest consumed fruit juice in North America. The objective of this research was to evaluate the application of HP treatment for inactivation of enzymes and destruction of microorganisms in apple juice. HP inactivation kinetics of selected enzymes (amylase, pectin methyl esterase and polyphenol oxidase) and microorganisms [Leuconostoc mesenteroides, Pichia membranaefaciens and Zygosaccharomyces badii, Escherichia coli (29055) and Escherichia coli (O157:H7)] in apple juice were evaluated under various test conditions (100--400 MPa, 0--60 min and 6--40°C) using a central composite design of experiments. The enzymes selected were of importance in apple juice preparation and/or storage stability of the processed juice. Microorganisms included those that are responsible for spoilage and/or public health concern as well as those that are indicative of unsanitary handling conditions. / Enzyme inactivation and microbial destruction due to pressure followed a dual-effect model consisting of a pressure pulse effect (PE) and a subsequent semi-logarithmic (first order) inactivation during the pressure hold-time. In general, results showed that inactivation of enzymes and destruction of microorganisms was more prominent at higher-pressure levels, higher temperature and longer treatment times, and at lower pH levels of juice. Pressure pulse effect was dependent on pressure level, with higher PE achieved at higher pressures. During the pressure-hold, as expected, the associated decimal reduction times (D values) decreased with an increase in pressure. Pressure dependency of D values was well described by the conventional death time model. The pressure resistance of enzymes and microorganisms varied, but complete inactivation of enzymes and destruction of microorganisms was possible with the combination of lower pH, higher pressure and higher temperatures. / Commercial PME from a citrus source was more pressure sensitive than PME from microbial source. Spoilage bacteria (L. mesenteroides) were more pressure resistant than the yeasts. E. coli enumerated on an enrichment media (supporting both injured and healthy cells) showed larger survivors and a greater resistance than on a more selective media. An increasing number of cells got injured than killed with the application of pressure treatment until they were all finally injured or killed. High-pressure treatment (pulse at 400 MPa or by holding about 10 min at 350 MPa and 30°C) resulted in complete destruction of the pathogenic microorganism E. coli (O157:H7) ensuring the public health safety of the process.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.84424 |
Date | January 2003 |
Creators | Riahi, Esmaeil |
Contributors | Ramaswamy, H. S. (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Food Science and Agricultural Chemistry.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001984964, proquestno: AAINQ88568, Theses scanned by UMI/ProQuest. |
Page generated in 0.0019 seconds