In this dissertation, we introduce novel exponential jump-diffusion models for pricing options. Firstly, the normal convolution gamma mixture jump-diffusion model is presented. This model generalizes Merton's jump-diffusion and Kou's double exponential jump-diffusion. We show that the normal convolution gamma mixture jump-diffusion model captures some economically important features of the asset price, and that it exhibits heavier tails than both Merton jump-diffusion and double exponential jump-diffusion models. Secondly, the normal convolution double gamma jump-diffusion model for pricing options is presented. We show that under certain configurations of both the normal convolution gamma mixture and the normal convolution double gamma jump-diffusion models, the latter exhibits a heavier left or right tail than the former.
For both models, the maximum likelihood procedure for estimating the model parameters under the physical measure is fairly straightforward; moreover, the likelihood function is given in closed form thereby eliminating the need to embed a probability density function recovery procedure such as the fast Fourier transform or the Fourier-cosine expansion methods in the parameter estimation procedure. In addition, both models can reproduce the implied volatility surface observed in the options data and provide a good fit to the market-quoted European option prices.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc2257741 |
Date | 12 1900 |
Creators | Adiele, Ugochukwu Oliver |
Contributors | Song, Kai-Sheng, Iaia, Joseph, Liu, Jianguo |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Adiele, Ugochukwu Oliver, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved. |
Page generated in 0.0022 seconds