In this study, time series decomposition techniques are used in conjunction with Kmeans clustering and Hierarchical clustering, two well-known clustering algorithms, to climate data. Their implementation and comparisons are then examined. The main objective is to identify similar climate trends and group geographical areas with similar environmental conditions. Climate data from specific places are collected and analyzed as part of the project. The time series is then split into trend, seasonality, and residual components. In order to categorize growing regions according to their climatic inclinations, the deconstructed time series are then submitted to K-means clustering and Hierarchical clustering with dynamic time warping. In order to understand how different regions’ climates compare to one another and how regions cluster based on the general trend of the temperature profile over the course of the full growing season as opposed to the seasonality component for the various locations, the created clusters are evaluated.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5799 |
Date | 01 December 2023 |
Creators | Ogedegbe, Emmanuel |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0018 seconds