This thesis deals with content based automatic photo categorization. The aim of the work is to experiment with advanced techniques of image represenatation and to create a classifier which is able to process large image dataset with sufficient accuracy and computation speed. A traditional solution based on using visual codebooks is enhanced by computing color features, soft assignment of visual words to extracted feature vectors, usage of image segmentation in process of visual codebook creation and dividing picture into cells. These cells are processed separately. Linear SVM classifier with explicit data embeding is used for its efficiency. Finally, results of experiments with above mentioned techniques of the image categorization are discussed.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:236399 |
Date | January 2013 |
Creators | Veľas, Martin |
Contributors | Řezníček, Ivo, Španěl, Michal |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds