Les travaux effectués lors de cette thèse concernent principalement la triangulation de Delaunay. On montre que la complexité en moyenne - en termes de sites inachevés - du processus de fusion multidimensionnelle dans l'hypothèse de distribution quasi-uniforme dans un hypercube est linéaire en moyenne. Ce résultat général est appliqué au cas du plan et permet d'analyser de nouveaux algorithmes de triangulation de Delaunay plus performants que ceux connus à ce jour. Le principe sous-jacent est de diviser le domaine selon des arbres bidimensionnels (quadtree, 2d-tree, bucket-tree. . . ) puis de fusionner les cellules obtenues selon deux directions. On étudie actuellement la prise en compte de contraintes directement pendant la phase de triangulation avec des algorithmes de ce type. De nouveaux algorithmes pratiques de localisation dans une triangulation sont proposés, basés sur la randomisation à partir d'un arbre binaire de recherche dynamique de type AVL, dont l'un est plus rapide que l'algorithme optimal de Kirkpatrick, au moins jusqu'à 12 millions de sites K Nous travaillons actuellement sur l'analyse rigoureuse de leur complexité en moyenne. Ce nouvel algorithme est utilisé pour construire " en-ligne " une triangulation de Delaunay qui est parmi les plus performantes des méthodes " en-ligne " connues à ce jour.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00850521 |
Date | 19 December 1997 |
Creators | Lemaire, Christophe |
Publisher | Ecole Nationale Supérieure des Mines de Saint-Etienne, Université Jean Monnet - Saint-Etienne |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0027 seconds