The Topographic Interferometry Mapping Mission (TIMMi) instrument is a unique millimeter wave interferometric radar system operating at 35 GHz (Ka-band). It was constructed in part to advance the technology readiness level of NASA’s Surface Water and Ocean Topography (SWOT) mission, a spaceborne platform that will globally map the altimetry of Earth’s water to gain insight into surface water interactions and dynamics. Previous ground deployments of TIMMi were successful in demonstrating the abilities of the system from a stationary platform. The next logical step was to move TIMMi closer to space by installing it on an airborne platform prove its capability in mapping wide swaths of land at a higher incidence angle. This thesis outlines the design considerations and challenges in adapting TIMMi to a small airborne platform. Documentation is included from many points throughout the development cycle, including hardware and software development, flight planning, data acquisition, and post-flight data processing.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:theses-2095 |
Date | 01 January 2013 |
Creators | Schrock, Rockwell B. |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses 1911 - February 2014 |
Page generated in 0.0018 seconds