Return to search

Kac-Moody algebraic structures in supergravity theories/ Les algèbres de Kac-Moody dans les théories de supergravité

A lot of developments made during the last years show that Kac-Moody algebras play an important role in the algebraic structure of some supergravity theories. These algebras would generate infinite-dimensional symmetry groups. The possible existence of such symmetries have motivated the reformulation of these theories as non-linear sigma-models based on the Kac-Moody symmetry groups. Such models are constructed in terms of an infinite number of fields parametrizing the generators of the corresponding algebra. If these conjectured symmetries are indeed actual symmetries of certain supergravity theories, a meaningful question to elucidate will be the interpretation of this infinite tower of fields. Another substantial problem is to find the correspondence between the sigma-models, which are explicitly invariant under the conjectured symmetries, and these corresponding space-time theories. The subject of this thesis is to address these questions in certain cases.
This dissertation is divided in three parts.
In Part I, we first review the mathematical background on Kac-Moody algebras required to understand the results of this thesis. We then describe the investigations of the underlying symmetry structure of supergravity theories.
In Part II, we focus on the bosonic sector of eleven-dimensional supergravity which would be invariant under the extended symmetry E_{11}. We study its subalgebra E_{10} and more precisely the real roots of its affine subalgebra E_9. For each positive real roots of E_9 we obtain a BPS solution of eleven-dimensional supergravity or of its exotic counterparts. All these solutions are related by U-dualities which are realized via E_9 Weyl transformations.
In Part III, we study the symmetries of pure N=2 supergravity in D=4. As is known, the dimensional reduction of this model with one Killing vector is characterized by a non-linearly realized symmetry SU(2,1). We consider the BPS brane solutions of this theory preserving half of the supersymmetry and the action of SU(2,1) on them. Infinite-dimensional symmetries are also studied and we provide evidence that the theory exhibits an underlying algebraic structure described by the Lorentzian Kac-Mody group SU(2,1)^{+++}. This evidence arises from the correspondence between the bosonic space-time fields of N=2 supergravity in D=4 and a one-parameter sigma-model based on the hyperbolic group SU(2,1)^{++}. It also follows from the structure of BPS brane solutions which is neatly encoded in SU(2,1)^{+++}. As a worthy by-product of our analysis, we obtain a regular embedding of su(2,1)^{+++} in E_{11} based on brane physics./
Nombreuses sont les recherches récentes indiquant que différentes théories de gravité couplée à un certain type de champs de matière pourraient être caractérisées par des algèbres de Kac-Moody. Celles-ci généreraient des symétries infinies-dimensionnelles. L'existence possible de ces symétries a motivé la reformulation de ces théories par des actions explicitement invariantes sous les transformations du groupe de Kac-Moody. Ces actions sont construites en termes d'une infinité de champs associés à l'infinité de générateurs de l'algèbre correspondante. Si la conjecture de ces symétries est exacte, qu'en est-il de l'interprétation de l'infinité de champs? Qu'en est-il d'autre part de la correspondance entre ces actions explicitement invariantes sous les groupes de Kac-Moody et les théories d'espace-temps correspondantes? C'est autour de ces questions que gravite cette thèse.
Nous nous sommes d'abord focalisés sur le secteur bosonique de la supergravité à 11 dimensions qui possèderait selon diverses études une symétrie étendue E_{11}. Nous avons étudié la sous-algèbre E_{10} et plus particulièrement les racines réelles de sa sous-algèbre affine E_9. Pour chacune de ces racines, nous avons obtenu une solution BPS de la supergravité à 11 dimensions dépendant de deux dimensions d'espace non-compactes. Cette infinité de solutions résulte de transformations de Weyl successives sur des champs dont l'interprétation physique d'espace-temps était connue.
Nous avons ensuite analysé les symétries de la supergravité N=2 à 4 dimensions dont le secteur bosonique contient la gravité couplée à un champ de Maxwell. Cette théorie réduite sur un vecteur de Killing est caractérisée par la symétrie SU(2,1). Nous avons considéré les solutions de brane BPS qui préservent la moitié des supersymétries ainsi que l'action du groupe SU(2,1) sur ces solutions. Les symétries infinies-dimensionnelles ont également été étudiées. D'une part, la correspondance entre les champs d'espace-temps de la théorie N=2 et le modèle sigma basé sur le groupe hyperbolique SU(2,1)^{++} est établie. D'autre part, on montre que la structure des solutions de brane BPS est bien encodée dans SU(2,1)^{+++}. Ces considérations argumentent le fait que la supergravité N=2 possèderait une structure algébrique décrite par le groupe de Kac-Moody Lorentzien SU(2,1)^{+++}.

Identiferoai:union.ndltd.org:BICfB/oai:ulb.ac.be:ETDULB:ULBetd-09072009-154142
Date22 September 2009
CreatorsTabti, Nassiba
ContributorsEnglert, François, Hambye, Thomas, Julia, Bernard, Kleinschmidt, Axel, Houart, Laurent, Henneaux, Marc
PublisherUniversite Libre de Bruxelles
Source SetsBibliothèque interuniversitaire de la Communauté française de Belgique
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-09072009-154142/
Rightsunrestricted, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses ULB. A cette fin, je donne licence à ULB : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus.

Page generated in 0.0021 seconds