Return to search

A Study on Mechanical Structure of a MEMS Accelerometer Fabricated by Multi-layer Metal Technology

This paper reports the evaluation results of the mechanical structures of MEMS (micro electro mechanical systems) sensor implemented in the integrated MEMS inertial sensor for a wide sensing range from below 0.1 G to 20 G (1 G = 9.8 m/s^2). To investigate the mechanical tolerance, a maximum target acceleration of 20G was applied to the sub-1G sensor which had the heaviest proof mass of all that sensors had. The structure stability of Ti/Au multi-layered structures was also examined by using Ti/Au micro cantilevers. The results showed that the stoppers effectively functioned to prevent the proof mass and the springs from self-destruction, and that the stability of Ti/Au structures increased with an increase in width. Those results suggest that the proposed stopper and spring structures could be promising to realize MEMS sensors.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-207232
Date22 July 2016
CreatorsYamane, Daisuke, Konishi, Toshifumi, Teranishi, Minami, Chang, Tso-Fu Mark, Chen, Chun-Yi, Toshiyoshi, Hiroshi, Masu, Kazuya, Sone, Masato, Machida, Katsuyuki
ContributorsTU Chemnitz, Fakultät für Elektrotechnik und Informationstechnik
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:conferenceObject
Formatapplication/pdf, text/plain, application/zip
SourceAMC 2015 – Advanced Metallization Conference

Page generated in 0.0021 seconds