Return to search

Regional hydrology captured in northern Borneo rainwater and dripwater isotope variability

Oxygen and hydrogen isotopes (δ18O, δD) are increasingly powerful tools for reconstructing past hydroclimate variability. The utility of δ18O- and δD-based paleoclimate records, however, depends on our understanding of how well these tracers reflect past climate conditions. The dynamics controlling the relationship between climate and water isotope variability are highly complex and often poorly constrained, especially in the tropics, where many key high-resolution paleoclimate records rely on past rainfall isotopes as proxies for hydroclimate. In this dissertation, I use multi-year timeseries of daily rainfall and biweekly dripwater δ18O from northern Borneo – a site for stalagmite δ18O-based paleoclimate reconstruction in the heart of the West Pacific Warm Pool – to track the cloud-to-calcite transformation of δ18O and its relationship to large-scale climate variability. Chapter 2 investigates the variability of rainfall δ18O variability from northern Borneo on diurnal to interannual timescales and its relationship with local and regional climate. Chapter 3 investigates the rainfall-to-dripwater transformation of climate-related isotopic signals following water transit through the Borneo cave system. Overall, this dissertation provides empirical support for the interpretation of northern Borneo stalagmite δ18O as a robust indicator of regional-scale hydroclimate variability, where higher δ18O reflects regional drying. More generally, this research provides a roadmap for obtaining more nuanced interpretations of speleothem δ18O records from multi-year, high-resolution, paired timeseries of rainfall and dripwater δ18O.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53523
Date08 June 2015
CreatorsMoerman, Jessica
ContributorsCobb, Kim
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0039 seconds