Es werden verschiedene Verfahren zur Lösung verallgemeinerter Nash-Gleichgewichtsprobleme mit dem Schwerpunkt auf deren globaler Konvergenz entwickelt. Ein globalisiertes Newton-Verfahren zur Berechnung normalisierter Lösungen, ein nichtglattes Optimierungsverfahren basierend auf einer unrestringierten Umformulierung des spieltheoretischen Problems, und ein Minimierungsansatz sowei eine Innere-Punkte-Methode zur Lösung der gemeinsamen Karush-Kuhn-Tucker-Bedingungen der Spieler werden theoretisch untersucht und numerisch getestet. Insbesondere das Innere-Punkte Verfahren erweist sich als das zur Zeit wohl beste Verfahren zur Lösung verallgemeinerter Nash-Gleichgewichtsprobleme. / In this thesis different algorithms for the solution of generalized Nash equilibrium problems with the focus on global convergence properties are developed. A globalized Newton method for the computation of normalized solutions, a nonsmooth algorithm based on an optimization reformulation of the game-theoretic problem, and a merit function approach and an interior point method for the solution of the concatenated Karush-Kuhn-Tucker-system are analyzed theoretically and numerically. The interior point method turns out to be one of the best existing methods for the solution of generalized Nash equilibrium problems.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:5677 |
Date | January 2011 |
Creators | Dreves, Axel |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds