Return to search

Modified lignin as replacement of carbon black in elastomers- For the development of sustainable tyre technology : The substitution of carbon black with modified lignin- Green tyre technology / Ersättningen av kimrök med modifierad lignin i bildäcksgummi-  För utvecklandet av grönare bildäcksteknologi

Due to its large flexibility, low-price, large availability, and properties lignin is seen as an important compound with a wide range of applications. The increasing demand of fossil-based rubber materials is causing a serious threat to the environment and it is contributing to plastic- and marine pollution, ozone depletion and carbon dioxide emission (CO2) [1,2]. Numerous toxicological researches highlight that Carbon black may act as a universal carrier of wide variety of chemicals of varying toxicity to the human body [3,4]. Consequently, researcher endeavours in finding sustainable and eco-friendlier alternatives. The aim of this thesis was to further investigate the possibilities of replacing carbon black with modified lignin in rubber elastomeric materials- for the development of sustainable tyre technology. The research questions for this thesis were divided in four parts:   How does lignin (unmodified and modified) structure affect the mechanical properties of the rubber compound? How does lignin affect the cross-link and vulcanisation of the rubber compound? How does lignin affect the dispersion of the rubber compound? Which modification of lignin is more compatible with the rubber compound? Lignin is the second most abundant biopolymer on earth (after cellulose) and is mainly extracted from black liquor, which is obtained as a by-product from the pulp- and paper. In this study, pure lignin was obtained from Lignoboost process (Lignocity) and underwent an esterification process of aldehydes (1. Protonic, 2. Butyric, 3. Isobutyric 4. Methacrylic and 5. Crotonic). LignoCity 2.0 is a project focusing on the development of sustainable products and processes connected to lignin. The structure of the modified lignin was characterized using a FTIR-spectra. Furthermore, seven different rubber compounds were produced at Anva Poly Tech, which is a company that manufactures rubber materials in Sunne, Sweden. The mechanical testing involved: Tensile strength, IRHD, Hardness, Rebound Resilience and Rheometer curve. It was observable that the addition of lignin in rubber compounds did not significantly improve the mechanical properties compared to conventional carbon black. However, the rheometer curves of the lignin samples clearly indicate an increase in scorch time and that lignin takes part in the vulcanization process, thus the delay in crosslinking phase.  In addition, it was visible that the fully replacement of carbon black with lignin (unmodified and modified) increased the elongation at break. Furthermore, the FTIR spectra indicated a complete and successful modification of lignin. In addition, compared to unmodified lignin, it was visible that the modified lignin significantly improved the mechanical properties. Therefore, it was possible to conclude that the configuration and double bonds of the aldehydes had an impact on the vulcanization process. Butyric and isobutyric lignin were the better choices compared to the other lignin samples. / De rådande miljöproblemen som: plast- och gummiutsläpp i havet, växthusgasutsläppet och den ekologiska utarmningen i kombination med den ökande efterfrågan av fossilbaserade material har lett till en ökad satsning på att hitta mer hållbara och miljövänligare alternativ [1, 2]. Kimrök i gummimaterial utgör en del hälsorisker och samtidigt har negativ påverkan på miljön. Flertals studier visar att långtidsexponering av kimrök kan ge allvarliga lungproblem och även cancer [3,4]. På grund av dess stora tillgänglighet, låga kostnad och unika egenskaper anses lignin vara en möjlig och intressant framtidskandidat för ersättande av fossila produkter. Syftet med denna studie var att undersöka möjligheterna om att ersätta kimrök med modifierad lignin i gummimaterial för utvecklandet av ’grönare däckteknologi’. Frågeställningarna i detta arbete var uppställda i fyra i olika delar: Hur påverkar tillsättningen av lignin (omodifierad och modifierad) gummiblandningens mekaniska egenskaper? Hur påverkar tillsättningen av lignin tvärbindningarna och vulkningen i gummiblandningen? Hur påverkas tillsättningen av lignin gummiblandningars dispersion? Vilken modifikation av lignin är mest kompatibel med gummimaterialet? Lignin är en organisk biopolymer som är den näst mest (efter cellulosa) förekommande biomassan i naturen och produceras som en biprodukt från pappers- och massa industrin. Ren lignin erhålls genom extraktion från svartlut med diverse isolations metoder. I detta arbete erhölls lignin genom Lignoboost processen från Lignocity.  Lignocity 2.0 är ett projekt som syftar till att utveckla, kommersiella och effektivisera hållbara processer och produkter med fokus på lignin. I detta arbete modifierades ligninet genom en s.k. esterfierings process av fem olika aldehyder 1.Propionic, 2. Butyric, 3. Isobutyric, 4. Methacrylic och 5. Crotonic som sedan undersöktes i en FTIR-spektra. Sju olika gummiblandningar skapades (inklusive ett gummi som endast innehöll kimrök och ett gummi som ej innehöll kimrök eller lignin). Gummiblandningarnas mekaniska egenskaper undersöktes på följande sätt: Dragstyrka, IRHD (Hårdhet), Hårdhet, studselasticiteten och reometrisk karaktärisering De ligninbaserade gummiblandningarna gav ingen signifikant förbättring i de mekaniska egenskaperna. Dock visade den reometriska kurvan att tillsättning av lignin gav en ökning i bränntid samt att ligninet gav en förskjutning i tvärbindningsfasen. Vidare gav den reometriska kurvan en indikation på att ligninet deltog i vulkaniseringsprocessen. Isobutyric lignin hade den högsta bränntiden. Det var även bevisat att tillsättningen av lignin gav en ökning i töjning. Modifieringen av lignin gav en signifikant förbättring av de mekaniska egenskaperna jämfört med omodifierad lignin. FTIR-spektrumet av ligninproven indikerade på en lyckad modifiering och koppling av aldehydgrupperna. Trots att de ligninbaserade gummiblandningarna inte förbättrade de mekaniska egenskaperna så kunde intressanta kopplingar mellan aldehydens konfigurationer, dubbelbindningar och vulkaniserings processen göras. Butyric och isobutyric visade bäst resultat jämfört de andra ligninproven.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-78707
Date January 2020
CreatorsAhmed Ismail, Mostafa
PublisherKarlstads universitet, Avdelningen för kemiteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf, application/pdf
Rightsinfo:eu-repo/semantics/openAccess, info:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds