Return to search

時間數列之核密度估計探討 / Kernel Density Estimation for Time Series

對樣本資料之機率密度函數f(x)的無母數估計方法,一直是統計推論領域的研究重點之一,而且在通訊理論與圖形辨別上有非常重要的地位。傳統的文獻對密度函數的估計方法大部分著重於獨立樣本的情形。對於時間數列的相關樣本(例如:經濟指標或加權股票指數資料)比較少提到。本文針對具有弱相關性的穩定時間數列樣本,嘗試提出一個核密度估計的方法並探討其性質。 / For a sample data, the nonparametric estimation of a probability density f(x) is always one point of research problem in statistical inference and plays an important role in communication theory and pattern recognition. Traditionally, the literature dealing with density estimation when the observations are independent is extensive. Time series sample with weak dependence, (for example, an economic indicator or a stock market index data), less in this aspect of discussion. Our main purpose is concerned with the estimation of the probability density function f(x) of a stationary time series sample and discusses some properties of this kernel density.

Identiferoai:union.ndltd.org:CHENGCHI/B2002002788
Creators姜一銘, Jiang, I Ming
Publisher國立政治大學
Source SetsNational Chengchi University Libraries
Language英文
Detected LanguageEnglish
Typetext
RightsCopyright © nccu library on behalf of the copyright holders

Page generated in 0.0028 seconds