In modern computing environments, hardware resources are commonly shared, and parallel computation is more widely used. Users run their services in parallel on the same hardware and process information with different confidentiality levels every day. Running parallel tasks can cause privacy and security problems if proper isolation is not enforced. Computers need to rely on a trusted root to protect the data from malicious entities. Intel proposed the Software Guard eXtension (SGX) to create a trusted execution environment (TEE) within the processor. SGX allows developers to benefit from the hardware level isolation. SGX relies only on the hardware, and claims runtime protection even if the OS and other software components are malicious. However, SGX disregards any kind of side-channel attacks. Researchers have demonstrated that microarchitectural sidechannels are very effective in thwarting the hardware provided isolation. In scenarios that involve SGX as part of their defense mechanism, system adversaries become important threats, and they are capable of initiating these attacks. This work introduces a new and more powerful cache side-channel attack that provides system adversaries a high resolution channel. The developed attack is able to virtually track all memory accesses of SGX execution with temporal precision. As a proof of concept, we demonstrate our attack to recover cryptographic AES keys from the commonly used implementations including those that were believed to be resistant in previous attack scenarios. Our results show that SGX cannot protect critical data sensitive computations, and efficient AES key recovery is possible in a practical environment. In contrast to previous attacks which require hundreds of measurements, this is the first cache side-channel attack on a real system that can recover AES keys with a minimal number of measurements. We can successfully recover the AES key from T-Table based implementations in a known plaintext and ciphertext scenario with an average of 15 and 7 samples respectively.
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1398 |
Date | 27 April 2017 |
Creators | Moghimi, Ahmad |
Contributors | Robert J. Walls, Reader, Craig E. Wills, Department Head, Thomas Eisenbarth, Advisor |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses (All Theses, All Years) |
Page generated in 0.0021 seconds