In March 2000, 1 million litres of raw sewage was released into the water system of Maroochy Shire on Queensland’s sunshine coast. This environmental disaster was caused by a disgruntled ex-contractor using a radio transmitter to illicitly access the electronically controlled pumps in the control system. In 2007 CNN screened video footage of an experimental attack against a electrical generator. The attack caused the generator to shake and smoke, visually showing the damage caused by cyber attack. These attacks highlight the importance of securing the control systems which our critical infrastructures depend on. This thesis addresses securing control systems, focusing on securing the communications for supervisory control and data acquisition (SCADA) systems. We review the architectures of SCADA systems and produce a list of the system constraints that relate to securing these systems. With these constraints in mind, we survey both the existing work in information and SCADA security, observing the need to investigate further the problem of secure communications for SCADA systems. We then present risk modelling techniques, and model the risk in a simple SCADA system, using the ISM, a software tool for modelling information security risk. In modelling the risk, we verify the hypothesis that securing the communications channel is an essential part of an effective security strategy for SCADA systems. After looking at risk modelling, and establishing the value of securing communications, we move on to key management for SCADA systems. Appropriate key management techniques are a crucial part of secure communications, and form an important part of the contributions made in this work. We present a key management protocol that has been designed to run under the constraints specific to SCADA systems. A reductionist security proof is developed for a simplified version of the protocol, showing it is secure in the Bellare Rogaway model.
Identifer | oai:union.ndltd.org:ADTP/265835 |
Date | January 2008 |
Creators | Dawson, Robert Edward |
Publisher | Queensland University of Technology |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Page generated in 0.0097 seconds