Return to search

Chronic arsenic exposure: mitigation with nutritional interventions and effects on inflammation and renal function

Background: In the country of Bangladesh, arsenic (As) exposure and high plasma homocysteine (hyperhomocysteinemia; HHcys) are widely prevalent. An estimated 35-77 million people in Bangladesh are exposed to As above the World Health Organization standard of 10 μg/L, while a cross-sectional study by our group estimated that 63% of men and 26% of women had HHcys. Both As exposure and HHcys are associated with adverse health outcomes. Arsenic exposure is an established cause of skin, lung, and bladder cancer, and cardiovascular disease, while HHcys is a strongly associated with increased risk for cardiovascular disease. Chronic kidney disease is emerging as an As-linked disease outcome. Potential mechanisms for adverse health effects induced by As (e.g. nephrotoxicity) include oxidative stress and inflammation.
Inorganic As is metabolized through a series of methylation and reduction reactions which facilitate As excretion in urine; arsenite (AsIII), the primary form of As in Bangladesh drinking water, is converted to monomethylarsonic acid (MMAV), monomethylarsonous acid (MMAIII), and dimethylarsinic acid (DMAV). The methyl donor for these methylation reactions is S-adenosylmethionine (SAM). Because the availability of SAM is modulated by various nutritional parameters, nutritional interventions have the potential to enhance As methylation. Supplementation with folic acid (FA), which increases liver SAM, has been shown by our group to enhance As methylation and lower blood As in folate-deficient Bangladeshi adults. The endogenous synthesis of creatine from guanidinoacetate (GAA) consumes a large proportion of SAM, and creatine supplementation in the diet can downregulate endogenous creatine synthesis by inhibiting GAA production. In this way, creatine supplementation has the potential to spare SAM, enhance As methylation, and also lower homocysteine (Hcys), a by-product of SAM-dependent methylation.
The potential for dietary creatine to enhance As methylation may explain the frequently observed associations of urinary creatinine with a decreased proportion of inorganic As in urine out of total urinary As (u%InAs), and an increased proportion of DMA in urine out of total urinary As (u%DMA) in epidemiological studies. Alternatively, it is possible that these associations are due to confounding by renal function, which could influence both As and creatinine excretion.
Objectives: Our objectives were to determine (1) whether folic acid and creatine lower blood As in a mixed folate-deficient and replete population, (2) whether creatine lowers plasma total homocysteine (tHcys), (3) whether As exposure is associated with increased inflammation and decreased estimated glomerular filtration rate (eGFR), and whether these effects are greater in those with a more oxidized plasma glutathione redox potential (EhGSH), and (4) whether As metabolite proportions in urine and blood are associated with eGFR, and whether these associations may explain the relationship between As metabolite proportions and urinary creatinine.
Methods: We addressed these objectives in five epidemiologic investigations of As-exposed Bangladeshi adults, employing data from a randomized placebo-controlled trial (the Folic Acid and Creatine Trial (FACT)) and two cross-sectional studies (the Nutritional Influences on Arsenic Toxicity (NIAT) study, and the Folate and Oxidative Stress (FOX) study). In the 24-week FACT study, participants were randomized to receive either placebo, 400 μg/day FA (FA400), 800 μg/day FA (FA800), 3 g/day creatine (Cr), or 3 g/day creatine + 400 μg/day FA (Cr+FA400). At week 12, half of the participants in the FA400 and FA800 groups were switched to placebo, while the other half continued their assigned supplements. Additionally, at week 12 participants in the Cr and Cr+FA400 groups were switched to placebo. In Chapter 4 (FACT), we examined whether FA400, FA800, Cr, or Cr+FA00 lowered blood As to a greater extent than placebo over the first 12 weeks of the trial, and whether a rebound in blood As occurred from week 12 to 24 related to cessation of FA supplementation. In Chapter 5 (FACT), we examined whether Cr or Cr+FA400 lowered plasma tHcys to a greater extent than placebo or FA400 alone, respectively, over the first 12 weeks of the trial. In Chapter 6 (NIAT), we examined the associations of water and urinary As with eGFR, and whether eGFR confounded the associations between urinary creatinine and the urinary %As metabolites; we also explored the associations of eGFR with the urinary %As metabolites. In Chapter 7 (FOX), we examined the associations of eGFR with the urinary and blood %As metabolites; we also examined whether the relationship between blood and urinary %As metabolites was decreased among those with reduced renal function. In Chapter 8 (FOX), we examined the associations of water, blood, and urinary As with markers of inflammation (C-reactive protein (CRP) and α-1 acid glycoprotein (AGP)), and eGFR, and investigated whether these associations were modified by the plasma EhGSH.
Results: FA800 lowered blood As to a significantly greater extent than placebo over the 24 weeks of the FACT study, with no rebound in blood As related to cessation of FA supplementation. FA400, Cr, and Cr+FA400 did not lower blood As to a greater extent than placebo (Chapter 4). Cr and Cr+FA400 did not lower plasma tHcys to a greater extent than placebo or FA400 alone, respectively. However, in the Cr+FA400 group we observed a significant correlation between a decrease in plasma GAA over time and a decrease in plasma tHcys over time (Chapter 5). Total urinary As was marginally associated with a decrease in eGFR in the NIAT study, though water As was not. Additionally in the NIAT study, while eGFR did not confound the relationship between urinary creatinine and urinary %As metabolites, we observed a positive association between eGFR and u%InAs, and a negative association between eGFR and u%DMA (Chapter 6). Likewise in the FOX study, eGFR was positively associated with u%InAs and negatively associated with u%DMA; the associations of eGFR with the blood
%As metabolites were in the same direction, although not statistically significant. We
additionally observed that for a given increase in blood %InAs, the increase in urinary %InAs tended to be smaller in those with reduced renal function, compared to those with normal renal function (Chaper 7). In the FOX study we also observed the total blood As and urinary As were marginally associated with decreased eGFR, while water As was not. Water As, urinary As, and blood As were significantly positively associated with plasma CRP in those with low plasma GSH or a more oxidized plasma EhGSH (Chapter 8).
Conclusions: Strategies to reduce risk for As-induced diseases are sorely needed, particularly due to barriers to As exposure removal and/or persistent elevated risk from past As exposure. Several susceptibility factors which can potentially be intervened upon have been discussed in this dissertation, namely folate nutritional status, redox status, and renal capacity to excrete As. Our finding that folic acid supplementation (800 μg/day) lowered blood As to a greater extent than placebo in a randomized trial indicates that improving the folate status of the general Bangladeshi population may reduce the body burden of As. Folate fortification of food in Bangladesh, in addition to potentially reducing risk for As-induced diseases, would have the additional benefit of substantially lowering the prevalence of HHcys. Our finding in a cross-sectional study that individuals with a more oxidized plasma glutathione redox potential were susceptible to As-induced inflammation may indicate that improving redox status can protect against As-induced inflammation. Randomized trials are needed to confirm a protective effect of antioxidants; upon confirmation, antioxidant dietary recommendations for As-exposed populations could potentially be implemented. Finally, our cross-sectional finding of a positive association between eGFR and urinary %InAs, and that eGFR modified the relationship between blood and urinary %InAs, suggests that InAs excretion may be impaired among individuals with reduced renal function. A decreased renal capacity to excrete InAs may lead to accumulation of InAs in tissues, and related health effects. Potential interventions related to renal function include treatment of risk factors for chronic kidney disease (e.g. blood pressure, blood glucose) in order to prevent onset of renal function deterioration, or to screen for chronic kidney disease in order to identify susceptible individuals and conduct directed interventions. Of these three susceptibility factors, the strongest evidence exists for the potential of folic acid to lower blood As. In Bangladesh, where As exposure and HHcys are widely prevalent, folate fortification should be considered a viable option for reducing risk for As- and Hcys-related diseases.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8BP01Z0
Date January 2015
CreatorsPeters, Brandilyn Anna
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0029 seconds