Return to search

Timbral Learning for Musical Robots

abstract: The tradition of building musical robots and automata is thousands of years old. Despite this rich history, even today musical robots do not play with as much nuance and subtlety as human musicians. In particular, most instruments allow the player to manipulate timbre while playing; if a violinist is told to sustain an E, they will select which string to play it on, how much bow pressure and velocity to use, whether to use the entire bow or only the portion near the tip or the frog, how close to the bridge or fingerboard to contact the string, whether or not to use a mute, and so forth. Each one of these choices affects the resulting timbre, and navigating this timbre space is part of the art of playing the instrument. Nonetheless, this type of timbral nuance has been largely ignored in the design of musical robots. Therefore, this dissertation introduces a suite of techniques that deal with timbral nuance in musical robots. Chapter 1 provides the motivating ideas and introduces Kiki, a robot designed by the author to explore timbral nuance. Chapter 2 provides a long history of musical robots, establishing the under-researched nature of timbral nuance. Chapter 3 is a comprehensive treatment of dynamic timbre production in percussion robots and, using Kiki as a case-study, provides a variety of techniques for designing striking mechanisms that produce a range of timbres similar to those produced by human players. Chapter 4 introduces a machine-learning algorithm for recognizing timbres, so that a robot can transcribe timbres played by a human during live performance. Chapter 5 introduces a technique that allows a robot to learn how to produce isolated instances of particular timbres by listening to a human play an examples of those timbres. The 6th and final chapter introduces a method that allows a robot to learn the musical context of different timbres; this is done in realtime during interactive improvisation between a human and robot, wherein the robot builds a statistical model of which timbres the human plays in which contexts, and uses this to inform its own playing. / Dissertation/Thesis / Doctoral Dissertation Media Arts and Sciences 2016

Identiferoai:union.ndltd.org:asu.edu/item:40739
Date January 2016
ContributorsKrzyzaniak, Michael Joseph (Author), Coleman, Grisha (Advisor), Turaga, Pavan (Committee member), Artemiadis, Panagiotis (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format168 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0023 seconds