Return to search

Foraging ecology and reproductive energetics of the Kittlitz's murrelet (Brachyramphus brevirostris) in Southeast Alaska

The Kittlitz's murrelet (Brachyramphus brevirostris) is a species of conservation concern over the entirety of its known range, which spans coastal Alaska and northeastern Russia. Concerns about the status of the species have been raised due to evidence of population declines in key breeding areas, low reproductive output, and perceived threats to adult survival. A general lack of information related to vital rates and natural history for this species has hampered efforts to address potential threats and drivers of population decline. This thesis addresses the hypothesis that foraging conditions and nutritional stress may be related to the observed low reproductive output and apparent population declines. I used stable isotope analysis of Kittlitz's murrelet feathers and blood to assess foraging habits during four separate periods across the annual cycle. I also used stable isotope signatures (δ¹⁵N and δ¹³C) in feathers from museum specimens collected in southeastern Alaska during 1907–1984 to investigate potential long-term trends in food habits and foraging ecology. I found that δ¹⁵N progressively increased by 5‰ between the vernal pre-alternate molt and the autumnal pre-basic molt, equivalent to an increase of 1.5 trophic levels for assimilated prey, whereas seasonal patterns in δ¹³C suggest shifts in foraging habitat between breeding and non-breeding periods. These results indicate that the pre-breeding diet was comprised primarily of low trophic level prey from offshore habitats, such as macrozooplankton and/or larval fish. During the summer breeding season, Kittlitz's murrelets gradually switched to consuming higher proportions of planktivorous fish from nearshore habitats. By the post-breeding period, during the pre-basic molt, the diet was comprised almost exclusively of higher trophic level prey, presumably forage fish, from offshore habitats. Based on stable isotope signatures of murrelet feathers from museum specimens, these seasonal patterns were evident during the past century (1907-2009). δ¹³C in feathers grown during pre- and post-breeding (pre-alternate and pre-basic molts, respectively) became significantly more depleted over the last century, however, suggesting either a gradual change in diet and/or foraging habitat or a long-term shift in the isotopic composition of prey.
I investigated potential energy constraints on reproduction in Kittlitz's murrelets by constructing a bioenergetics model to estimate energy budgets for breeding adult Kittlitz's murrelets under different scenarios of prey energy content and commuting distance between foraging areas and nest sites. Estimated field metabolic rate (FMR) of breeding Kittlitz's murrelets during the chick-rearing period exceeded the hypothetical maximum sustainable working capacity (MSWC; 4 times basal metabolic rate [BMR]) under empirically derived scenarios of prey energy content and commuting distance. This suggests that, under conditions of low energy content in available prey and/or long commuting distances to inland nest sites, Kittlitz's murrelets would be required to expend energy at a rate that, if maintained over an extended period, could be detrimental to subsequent adult survival and overall fitness. In addition, energy expenditure rates at the high end of the estimated range may exceed the rate at which food energy can be assimilated by adult murrelets. Metabolism of fat reserves, as indicated by mass loss during the breeding season, may be a partial, although limited, solution to periods of high energy demand for breeding adults.
This thesis research is the first to indicate that Kittlitz's murrelets rely on distinctly different prey resources during different periods of the annual cycle. The previously unappreciated seasonal complexity of Kittlitz's murrelet foraging ecology offers a new perspective on potential factors limiting survival and reproduction in this species of conservation concern. In addition, my research suggests an adaptive explanation for the low breeding frequency and low reproductive output of Kittlitz's murrelets that is related to the exceptionally high energy expenditure rates required to raise young at nest sites as much as 70 km inland from the coast and up to 2,500 m above sea level. Because of their high level of reproductive effort, Kittlitz's murrelets may be more dependent on the high availability of high-lipid marine prey than other seabirds. / Graduation date: 2012

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/27862
Date05 December 2011
CreatorsHatch, Nick R.
ContributorsRoby, Daniel
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.002 seconds