Return to search

Untersuchungen zur Resorption von biomimetisch mineralisiertem Kollagen unter besonderer Berücksichtigung der Aktivität osteoklastenspezifischer Enzyme

Vitales Knochengewebe ist ständigen Umbauprozessen unterworfen. Entsteht ein Defekt, wird der Knochen durch neugeformte Strukturen repariert. In diesen Prozess sind verschiedene Zelltypen involviert, darunter Osteoblasten, Osteozyten und Osteoklasten (Teitelbaum, 2000a; Ross und Christiano, 2006; Zhang et al., 2012). In der Wiederherstellungs-Chirurgie ist Knochenersatz von großer Bedeutung, wenn schwere skelettale Schäden auftreten (Onoda et al., 2011). Auto- als auch Allotransplantationen von Knochengeweben sind aufgrund der guten osteoinduktiven und biochemischen Eigenschaften noch immer der Goldstandard (Parikh, 2002; Sen und Miclau, 2007; Zhang et al., 2012).

Aufgrund der Knappheit der zur Verfügung stehenden muskuloskelettalen Spendermaterialien und der zugleich steigenden Anzahl von notwendigen Knochenmaterialtransplantationen wird vermehrt nach Materialersatz gesucht. Der ideale Knochentransplantatersatz ist biokompatibel, bioresorbierbar, dirigiert die Richtung der Knochenneubildung (osteokonduktiv), regt die Knochenneubildung an (osteoinduktiv), ist strukturell knochenähnlich, einfach anzuwenden und kosteneffektiv (Greenwald et al., 2001; Parikh, 2002; Chim und Schantz, 2005; Zhang et al., 2012).

Tissue Engineering ist ein interdisziplinäres Gebiet der Wissenschaft, welches die Prinzipien des Ingenieurwesens und der Biowissenschaften auf die Entwicklung biologischer Ersatzmaterialien anwendet, die für die Wiederherstellung, Erhaltung oder Verbesserung von Gewebe- oder Organfunktionen eingesetzt werden (Langer, 1993; Nerem und Sambanis, 1995). Langfristig sollen für die Implantation geeignete Systeme entwickelt oder in vivo Geweberemodelling ermöglicht werden. Hauptkomponente des Tissue Engineering ist der Einsatz lebender Zellen und/oder extrazellulärer Matrixbestandteile in der Entwicklung solcher Systeme und Konstrukte, die implantiert zur Wiederherstellung oder zum Ersatz der biologischen Funktionen führen. Um das biologische Verhalten der Konstrukte kontrollieren zu können, erfordert die Entwicklung das Verständnis der Struktur-Funktions-Beziehung von Zellen, Geweben und Organen. Die extrazelluläre Matrix der biologischen Systeme ist ebenfalls von großer Bedeutung, da sie ihre mechanischen Eigenschaften bestimmt. Chemische und strukturelle Stabilität sind weitere notwendige Eigenschaften, um das Überleben der Zellen nach der Implantation in der in vivo Umgebung zu gewährleisten (Nerem und Sambanis, 1995). Denkansätze im Tissue Engineering beinhalten die Nutzung von Scaffolds, Zellen und deren Kombination. Häufigster Ansatz ist der Einsatz resorbierbarer oder biologisch abbaubarer Scaffolds, die an die Umgebung des lebenden Gewebes angepasst sind und mit lebenden Zellen besiedelt werden können.

Die Zellen proliferieren und organisieren sich in der dreidimensionalen Struktur des Scaffolds und beginnen mit der Produktion adäquater extrazellulärer Matrix. Während der Formierung, Ablagerung und Organisation der neu generierten Matrix wird die Startmatrix des Scaffolds abgebaut, resorbiert und metabolisiert (Nerem und Sambanis, 1995; Stock und Vacanti, 2001). Die Zellen differenzieren sich auf dem Scaffold zu den gewünschten Organ- beziehungsweise Gewebezellen bevor die in vitro besiedelten Matrizen implantiert werden. Am Ende des Prozesses ist ein lebendes Gewebe oder Organ entstanden, welches die Funktion des Gewebes / Organs im Körper erhält, wieder herstellt oder verbessert. Das Risiko immunologischer Abwehrreaktionen, ebenso wie das Risiko viraler Infektionen wird beim Tissue Engineering durch den Einsatz autologer Spenderzellen umgangen. Die eingesetzten Scaffolds müssen zudem biokompatibel sein und den nutritiven als auch biologischen Ansprüchen der spezifischen Zellpopulation gerecht werden, die in der Gewebeformation involviert ist (Stock und Vacanti, 2001).

Ein weiterer Ansatz ist es, Zellen von biologischer Matrix enzymatisch oder durch Detergenzien zu entfernen und diese dezellularisierte Matrix anschließend zu verwenden. Es handelt sich dabei um allogenes oder xenogenes Gewebe. Diese Matrix ist dann theoretisch biologisch abbaubar beziehungsweise resorbierbar und müsste sich gut für die Besiedlung mit Zellen eignen. Alternativ werden artifizielle Matrizen im Tissue Engineering eingesetzt (Stock und Vacanti, 2001; Heinemann et al., 2011). In Abbildung 1.1 ist das Prinzip des Tissue Engineering dargestellt (Drosse et al., 2008).

Bei der Therapie von Knochendefekten in lasttragenden Regionen werden häufig nichtresorbierbare Materialien wie Metalle und Keramiken eingesetzt (Navarro et al., 2008). Der Einsatz von resorbierbaren Materialien ist erstrebenswert, da sich diese nach der Transplantation in den Prozess des Knochenremodellings integrieren und somit mit der Zeit durch körpereigenes Material ersetzt werden (Hutmacher, 2000; Boccaccini und Maquet, 2003; Navarro et al., 2008). Damit erlangt der Knochen langsam seine natürlichen biomechanischen Eigenschaften zurück (Baron, 1995; Teitelbaum, 2000b). Wichtig ist jedoch, dass die Resorption und der Ersatz durch körpereigenes Knochenmaterial ausgewogen stattfinden, sodass die mechanische Stabilität des Gewebes gewährleistet ist. Daher sind Untersuchungen zur Resorption von Biomaterialien von großer Bedeutung, bevor diese in der Klinik in vivo zum Einsatz kommen (Zhang et al., 2012).

Osteoklasten sind für die Resorption von Knochen verantwortliche Zellen, weshalb sie in Zellexperimenten zur Untersuchung von Resorption eingesetzt werden. Typische Untersuchungsmethoden zum Nachweis von osteoklastärer Aktivität sind die Feststellung von Vielkernigkeit, die genanalytische Bestimmung von tartratresistenter saurer Phosphatase 5b (TRAP 5b) (Minkin, 1982; Ek-Rylander et al., 1991; Ljusberg et al., 2005; Detsch et al., 2010b), Carboanhydrase II (CAII) (Lehenkari et al., 1998; Detsch et al., 2010b; Schilling et al., 2004), Kathepsin K (Bossard et al., 1996; Littlewood-Evans et al., 1997; Votta et al., 1997; Söderström et al., 1999; Dodds et al., 2001; Ljusberg et al., 2005), des Kalzitoninrezeptors und des Vitronektinrezeptors (Detsch und Boccaccini, 2014; Blair, 1998; Schilling et al., 2004). Die enzymatische Messung von TRAP 5b (Halleen et al., 2000; Janckila et al., 2001) und CAII (Detsch et al., 2010a) und die Bestimmung der Kalziumkonzentration im Überstand der Zellkulturen (Neutzsky-Wulff et al., 2010; Reichert et al., 2013) sind weitere Marker, die zur Beschreibung osteoklastärer Zelldifferenzierung genannt wurden. Zudem können Kollagenspaltprodukte im Zellkulturüberstand nachgewiesen werden (Karsdal et al., 2003; Neutzsky-Wulff et al., 2010). Eine weitere große Rolle bei Resorptionsuntersuchungen an Biomaterialien spielt die Analyse von Resorptionspits.

Allerdings gibt es hierbei einige Nachteile. Die mikroskopische Beurteilung der Resorptionslakunen ist sehr zeitaufwändig und kostenintensiv. Zudem ist eine sehr geringe Rauigkeit des eingesetzten Materials nötig, um die Resorption mikroskopisch anhand von Resorptionslakunen zu quantifizieren, da die Messmethoden die resorbierte Fläche und das resorbierte Volumen relativ zur originalen Oberflächenbeschaffenheit ermitteln. Ideal ist hierbei eine Rauigkeit von unter 1 m (Zhang et al., 2012) damit zwischen bereits vorher existierenden strukturellen Unebenheiten und neu entstandenen Pits unterschieden werden kann. Zudem können bisher bekannte Resorptionsassays nur die Resorption auf glatten Knochenstrukturen imitieren. Im Körper machen hingegen der trabekuläre oder spongiöse Knochen den größten Anteil aus, allerdings sind solche Strukturen in vitro schwer zu imitieren und Resorptionsstudien dazu sind noch nicht sehr zuverlässig (Zhang et al., 2012). Auf unregelmäßigen oder porösen Materialien können bisher noch keine quantifizierenden Aussagen über die Resorption gemacht werden.

Die Motivation dieser Arbeit war es, biochemische Verfahren für die Quantifizierung von osteoklastärer Resorption zu entwickeln. Während die biochemischen Messungen der Aktivitäten von TRAP 5b und CAII bereits als osteoklastäre Marker eingesetzt werden, sollte hier erstmals die enzymatische Aktivität von Kathepsin K biochemisch bestimmt werden. Dazu wurden Osteoklasten auf verschiedenen Materialien kultiviert und untersucht. Durch biochemische Analyse sollten dann Rückschlüsse auf die Resorptionsaktivität der Zellen gezogen werden. Das Fernziel dieser Arbeit ist, das Resorptionsverhalten von Osteoklasten auf Biomaterialien zu quantifizieren, sodass die zeit- und kostenintensive mikroskopische Beurteilung ersetzt werden kann. Ein Schritt auf dem Weg zu diesem Ziel ist es, die Osteoklastogenese auf den Modellsubstraten genauer zu untersuchen und herauszufinden, wie die in vitro Resorption auf den verschiedenen Substraten beeinflusst werden kann. Die gemessenen Enzymaktivitäten sollten schließlich mit der Resorptionsaktivität der Osteoklasten in Korrelation gebracht werden.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-163307
Date30 August 2016
CreatorsKoperski, Kathleen
ContributorsTechnische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Prof. Dr. Michael Gelinsky, Prof. Dr. Angela Rösen-Wolff
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0032 seconds