Return to search

Sistema de solução de problemas cooperativos : um estudo de caso / Cooperative problems solving system: a case of study

Os avanços tecnológicos da última década tem feito dos computadores um elemento de contribuição essencial para os processos de solução de problemas e de tomada de decisão cooperativos. Hoje, alem do interesse mantido nos sistemas de solução de problemas, cujo raciocínio a baseado no processo de decisão de um único individuo (conhecidos por SE's), o esforço das pesquisas, em Inteligência Artificial, esta centrado no sentido de conceber sistemas que permitam a interação cooperativa entre diversos indivíduos participantes do processo, sejam esses humanos ou sistemas computacionais. A solução de problemas cooperativos, dentro do escopo geral da Inteligência Artificial (IA), é assunto analisado sob dois aspectos diferentes. O primeiro, mais antigo, identifica, como agentes de um dialogo, o sistema computacional e o seu usuário, onde pesquisas estão centradas no estudo da interação homem-máquina. Os esforços desta área de pesquisa tem sido no sentido de conceber, aos sistemas, capacidades de comunicação muito mais ricas do que aquelas oferecidas por sistemas de solução de problemas tradicionais, isto é, permitir aos sistemas compartilhar a solução de um problema, tomando o usuário um agente muito mais ativo e participativo. O segundo aspecto situa-se na área de Inteligência Artificial Distribuída (IAD), uma nova concepção de IA que acompanha o avanço da tecnologia de desenvolvimento de maquinas paralelas e a difusão, em larga escala, de sistemas computacionais distribuídos. Seus esforços são no sentido de conceber sistemas compostos de múltiplos sub-sistemas, capazes de resolver problemas complexos autonomamente. de forma cooperativa. Este trabalho se insere no contexto da interação homem-máquina. São apresentados métodos e estratégias para o fornecimento de capacidades cooperativas ao sistema. A descrição de uma arquitetura para Sistemas Especialistas (SE), baseada em raciocínio meta-nível, é apresentada com o intuito de enriquecer as capacidades de explanação e aquisição de conhecimentos desses sistemas. Consideramos que as ferramentas de explanação e aquisição de conhecimentos são fundamentais para a construção de diálogos cooperativos entre o sistema e o usuário. A ferramenta de explanação é o componente do SE responsável pela geração de justificativas sobre as conclusões do sistema. Ela permite ao sistema tornar explicito o seu raciocínio, fornecendo capacidades de argumentação sobre a validade de suas conclusões. O sistema, através desta ferramenta, tem condições de explicar suas ações, conclusões. escolhas e perguntas feitas ao usuário, permitindo, dessa forma, ao próprio usuário. através de um diálogo cooperativo. comparar seus conhecimentos e estratégias. concordando ou discordando do sistema. A ferramenta de aquisição de conhecimento. outro modulo importante num processo cooperativo, permite ao sistema aprender incrementalmente, através da aquisição de novos conhecimentos, bem como da reestruturação de alguns conhecimentos ou regras com falhas. Analisa-se um problema real, cuja solução e concebida através da interação homem-máquina. embora, intuitivamente, seja apresentada uma abordagem multi-agente para o problema, no final deste trabalho, com o intuito de apontar a evolução que terá essa pesquisa. Como produto deste trabalho de pesquisa, desenvolveu-se, dentro do projeto Inteligência Artificial Distribuída do grupo de Inteligência Artificial do CPGCC da UFRGS. urn sistema denominado SETA. O sistema permite a criação de SE's dedicados a auxiliar o medico na prescrição farmacológica de qualquer grupo de patologia clinica. A representação do conhecimento aplicado foi desenvolvida com o intuito de facilitar a atividade de formulação de prescrições onde o conhecimento esta estruturado em níveis de representação que denotam os conhecimentos clínico e farmacológico separadamente. Cada SE, desenvolvido pelo SETA, permite oferecer justificativas claras ao usuário sobre a prescrição farmacológica indicada pelo sistema, através de explanações do tipo how. why e why not. Oferece, ainda, facilidades de aquisição de conhecimento, permitindo a modificação do conhecimento do sistema através de um modulo interativo, cuja interface foi construída no sentido de permitir uma comunicacc7o natural entre os agentes. ou seja. o sistema e o medico especialista. Resumindo, a interação cooperativa homem-máquina é concebida através das facilidades de explanação e aquisição de conhecimento, levando a incorporação explicita de meta-conhecimento ao sistema. / The technological advance of the past decade turned computers into an element of essential contribution for the cooperative problem-solving and decision-taking processes. Today, besides the interest kept in problem-solving systems, whose reasoning is based upon the process of decision of a single individual (known as ES), the effort of researchs in Artificial Intelligence is to create systems that allow cooperative interaction among various individuals participating in the process, these being either human beings or computer systems. The solution of cooperative problems, within the general scope of Artificial Intelligence, is a subject analysed under two different aspects. The first one, out of date, identifies the computer system and its user as agents in a dialogue, and the researches are concentrated on the study of man-machine interaction. The efforts in this area of research have been to grant the systems communication abilities much richer than those offered by tradicional problem-solving systems. that is, that allow the systems to share the solution of a problem. causing the user to be more active and participating. The second aspect is located in the area of Distributed Artificial Intelligence (DAI), a new conception of AI that goes with the improvement of the technology of development of parallel machines and the diffusion on a large scale of distributed computer systems. Efforts have been made to create systems made up of multiple sub-systems capable of solving complex problems by themselves, in a cooperative way. This work is inserted in the context of man-machine interaction. It presents methods and strategies to supply the system with cooperative abilities. The description of an architecture for Expert Systems (ES), based upon meta-level reasoning, is presented with the purpose of improving the abilities of explanation and knowledge acquisition of these systems. We consider explanation tools and knowledge acquisition to be fundamental to the construction of cooperative dialogues between the system and the user. The explanation tool is the ES component responsible for the generation of justifications about the system conclusions. It allows the system to make its reasoning explicit, providing it with arguing abilities about the effectiveness of its conclusions. The system. through this tool, is able to explain its actions, conclusions, choices and questions put to the user, thus allowing the user, through a cooperative dialogue, to compare his knowledge and strategies, to agree or disagree with the system. The knowledge acquisition tool, another important unit in a cooperative process, allows the system to learn more and more through the acquisition of new knowledge as well as through the restructuration of knowledge or rules that have failed. A real problem is analysed here and its solution is conceived through manmachine interaction. We also present, at the end of this work, a multi-agent approach for the problem, in order to show how this research will evolve. This research work resulted in the development, within the Distributed Artificial Intelligence project of the Artificial Intelligence group of the CPGCC of UFRGS, of a system called SETA. This system permits the creation of ES dedicated to help doctors prescribe medicines for any groups of clinical pathology. The knowledge representation used was developed with a view to facilitate the making of prescriptions, and the knowledge is organized in levels of representation that express clinical knowledge and pharmacological knowledge separately. Each ES developed by SETA can offer reasonable justifications to users about the pharmacological prescription indicated by the system through explanations such as how, why and why not. It is also ready to acquire knowledge. allowing the system to alter knowledge through an interactive unit whose interface was built to permit a natural communication between the agents. that is, the system and the medical specialist. In short, man-machine cooperative interaction is based upon readiness for explanation and knowledge acquisition, leading to an explicit assimilation of meta-knowledge by the system.

Identiferoai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/25624
Date January 1995
CreatorsFlores, Cecilia Dias
ContributorsVicari, Rosa Maria
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds