Work email is one of the organisations most critical tool today. It`s have become a standard way to communicate internally and externally. It can also affect our well-being. Email overload has become a well-known issue for many people. With interviews, follow up interviews, and a workshop, three persons from an accounting firm prioritise pre-define emails needs. And identified several other email needs that were added to the priority list. A thematic analysis and summarizing of a Likert scale was conducted to identify underlying work email needs and work email needs that are not apparent. Three work email needs were selected and using scenario-based methods and the elements of PACT to investigating how the characteristics of a chatbot can help solve the identified work email overload issue? The result shows that email overload is percept different from individual to individual. The choice of how email is handled and email activities indicate how email overload feeling is experienced. The result shows a need to get a sense of the email content quickly, fast collect financial information and information from Swedish authorities, and repetitive, time-consuming tasks. Suggestions on how this problem can be solved have been put forward for many years, and how to use machine learning to help reduce email overload. However, many of these proposed solutions have not yet been implemented on a full scale. One conclusion may be that since email overload is not experienced in the same way, individuals have different needs - One solution does not fit all. With the help of the character of a chatbot, many problems can be solved. And with a technological character of a chatbot that can learn individuals' email patterns, suggest email task to the user and performing tasks to reducing the email overload perception. Using keyword for email intents to get a sense of the email content faster and produce quick links where to find information about the identified subject. And to work preventive give the user remainder and perform repetitive tasks on specific dates.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-85013 |
Date | January 2021 |
Creators | Olsen, Linnéa |
Publisher | Karlstads universitet, Handelshögskolan (from 2013) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds