Recommender systems are programs that aim to present items like songs or books that are likely to be interesting for a user. These systems have become increasingly popular and are intensively studied by research groups all over the world. In web systems, like e-shops or community servers there are usually multiple data sources we can use for recommending, as user and item attributes, user-item rating or implicit feedback from user behaviour. In the thesis, we present a concept of a Universal Recommender System (Unresyst) that can use these data sources and is domain-independent at the same time. We propose how Unresyst can be used. From the contemporary methods of recommending, we choose a knowledge based algorithm combined with collaborative filtering as the most appropriate algorithm for Unresyst. We analyze data sources in various systems and generalize them to be domain-independent. We design the architecture of Unresyst, describe its interfaces and methods for processing the data sources. We adapt Unresyst to three real-world data sets, evaluate the recommendation accuracy results and compare them to a contemporary collaborative filtering recommender. The comparison shows that combining multiple data sources can improve the accuracy of collaborative filtering algorithms and can be used in systems where...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:300512 |
Date | January 2011 |
Creators | Cvengroš, Petr |
Contributors | Vojtáš, Peter, Dědek, Jan |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds