Return to search

Hölder Extensions for Non-Standard Fractal Koch Curves

Let K be a non-standard fractal Koch curve with contraction factor α. Assume α is of the form α = 2+1/m for some m ∈ N and that K is embedded in a larger domain Ω. Further suppose that u is any Hölder continuous function on K. Then for each such m ∈ N and iteration n ≥ 0, we construct a bounded linear operator Πn which extends u from the prefractal Koch curve Kn into the whole of Ω. Unfortunately, our sequence of extension functions Πnu are not bounded in norm in the limit because the upper bound is a strictly increasing function of n; this prevents us from demonstrating uniform convergence in the limit.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-5096
Date11 June 2014
CreatorsFetbrandt, Joshua Taylor
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0019 seconds