Context-aware computing aims at making mobile devices sensitive to the social and physical settings in which they are used. A necessary requirement to achieve this goal is to enable those devices to establish a shared understanding of the desired settings. Establishing a shared understanding entails the need to manipulate sensed data in order to capture a real world situation wholly, conceptually, and meaningfully. Quite often, however, the data acquired from sensors can be inexact, incomplete, and/or uncertain. Inexact sensing arises mostly due to the inherent limitation of sensors to capture a real world phenomenon precisely. Incompleteness is caused by the absence of a mechanism to capture certain real-world aspects; and uncertainty stems from the lack of knowledge about the reliability of the sensing sources, such as their sensing range, accuracy, and resolution. The thesis identifies a set of criteria for a context-aware system to capture dynamic real-world situations. On the basis of these criteria, a distributed architecture is designed, implemented and tested. The architecture consists of Primitive Context Servers, which abstract the acquisition of primitive contexts from physical sensors; Aggregators, to minimise error caused by inconsistent sensing, and to gather correlated primitive contexts pertaining to a particular entity or situation; a Knowledge Base and an Empirical Ambient Knowledge Component, to model dynamic properties of entities with facts and beliefs; and a Composer, to reason about dynamic real-world situations on the basis of sensed data. Two additional components, namely, the Event Handler and the Rule Organiser, are responsible for dynamically generating context rules by associating decision events ? signifying a user?s activity ? with the context in which those decision events are produced. Context-rules are essential elements with which the behaviour of mobile devices can be controlled and useful services can be provided. Four estimation and recognition schemes, namely, Fuzzy Logic, Hidden Markov Models, Dempster-Schafer Theory of Evidence, and Bayesian Networks, are investigated, and their suitability for the implementation of the components of the architecture of the thesis is studied. Subsequently, fuzzy sets are chosen to model dynamic properties of entities. Dempster-Schafer?s combination theory is chosen for aggregating primitive contexts; and Bayesian Networks are chosen to reason about a higher-level context, which is an abstraction of a real-world situation. A Bayesian Composer is implemented to demonstrate the capability of the architecture in dealing with uncertainty, in revising the belief of the Empirical Ambient Knowledge Component, in dealing with the dynamics of primitive contexts and in dynamically defining contextual states. The Composer could be able to reason about the whereabouts of a person in the absence of any localisation sensor. Thermal, relative humidity, light intensity properties of a place as well as time information were employed to model and reason about a place. Consequently, depending on the variety and reliability of the sensors employed, the Composer could be able to discriminate between rooms, corridors, a building, or an outdoor place with different degrees of uncertainty. The Context-Aware E-Pad (CAEP) application is designed and implemented to demonstrate how applications can employ a higher-level context without the need to directly deal with its composition, and how a context rule can be generated by associating the activities (decision events) of a mobile user with the context in which the decision events are produced.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24716 |
Date | 13 June 2006 |
Creators | Dargie, Waltenegus |
Contributors | Schill, Alexander, Gellersen, Hans-Werner, Kabitzsch, Klaus |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds