Return to search

A Theoretical and Numerical Analysis of a Kohn-Sham Equation and Related Control Problems / Eine theoretische und numerische Untersuchung einer Kohn-Sham-Gleichung und verwandter Steuerungsprobleme

In this work, multi-particle quantum optimal control problems are studied in the framework of time-dependent density functional theory (TDDFT).
Quantum control problems are of great importance in both fundamental research and application of atomic and molecular systems. Typical applications are laser induced chemical reactions, nuclear magnetic resonance experiments, and quantum computing.
Theoretically, the problem of how to describe a non-relativistic system of multiple particles is solved by the Schrödinger equation (SE). However, due to the exponential increase in numerical complexity with the number of particles, it is impossible to directly solve the Schrödinger equation for large systems of interest. An efficient and successful approach to overcome this difficulty is the framework of TDDFT and the use of the time-dependent Kohn-Sham (TDKS) equations therein.
This is done by replacing the multi-particle SE with a set of nonlinear single-particle Schrödinger equations that are coupled through an additional potential.

Despite the fact that TDDFT is widely used for physical and quantum chemical calculation and software packages for its use are readily available, its mathematical foundation is still under active development and even fundamental issues remain unproven today.
The main purpose of this thesis is to provide a consistent and rigorous setting for the TDKS equations and of the related optimal control problems.

In the first part of the thesis, the framework of density functional theory (DFT) and TDDFT are introduced. This includes a detailed presentation of the different functional sets forming DFT. Furthermore, the known equivalence of the TDKS system to the original SE problem is further discussed.

To implement the TDDFT framework for multi-particle computations, the TDKS equations provide one of the most successful approaches nowadays. However, only few mathematical results concerning these equations are available and these results do not cover all issues that arise in the formulation of optimal control problems governed by the TDKS model.
It is the purpose of the second part of this thesis to address these issues such as higher regularity of TDKS solutions and the case of weaker requirements on external (control) potentials that are instrumental for the formulation of well-posed TDKS control problems. For this purpose, in this work, existence and uniqueness of TDKS solutions are investigated in the Galerkin framework and using energy estimates for the nonlinear TDKS equations.

In the third part of this thesis, optimal control problems governed by the TDKS model are formulated and investigated. For this purpose, relevant cost functionals that model the purpose of the control are discussed.
Henceforth, TDKS control problems result from the requirement of optimising the given cost functionals subject to the differential constraint given by the TDKS equations. The analysis of these problems is novel and represents one of the main contributions of the present thesis.
In particular, existence of minimizers is proved and their characterization by TDKS optimality systems is discussed in detail.
To this end, Fréchet differentiability of the TDKS model and of the cost functionals is addressed considering \(H^1\) cost of the control.
This part is concluded by deriving the reduced gradient in the \(L^2\) and \(H^1\) inner product.
While the \(L^2\) optimization is widespread in the literature, the choice of the \(H^1\) gradient is motivated in this work by theoretical consideration and by resulting numerical advantages.

The last part of the thesis is devoted to the numerical approximation of the TDKS optimality systems and to their solution by gradient-based optimization techniques.
For the former purpose, Strang time-splitting pseudo-spectral schemes are discussed including a review of some recent theoretical estimates for these schemes and a numerical validation of these estimates.
For the latter purpose, nonlinear (projected) conjugate gradient methods are implemented and are used to validate the theoretical analysis of this thesis with results of numerical experiments with different cost functional settings. / In dieser Arbeit werden quantenmechanische Vielteilchen-Optimalsteuerungsprobleme im Rahmen der zeitabhängigen Dichtefunktionaltheorie (TDDFT) untersucht.
Quantenmechanische Optimalsteuerungsprobleme sind sowohl in der Grundlagenforschung atomarer und molekularer Systeme als auch in entsprechenden Anwendungen
von großer Bedeutung. Typische Anwendungen sind laserinduzierte chemische Reaktionen, Kernspinresonanzexperimente und Quantencomputer.
Theoretisch ist das Problem einer nicht-relativistischen Beschreibung von Vielteilchensystemen mit der Schrödingergleichung (SG) gelöst. Tatsächlich ist es aber wegen des exponentiellen Anstiegs der numerischen Komplexität mit der Teilchenzahl unmöglich, die Schrödingergleichung für große Systeme von Interesse direkt zu lösen.
Ein effizienter und erfolgreicher Ansatz diese Schwierigkeit zu überwinden ist die TDDFT und die Verwendung der zeitabhängigen Kohn-Sham-Gleichungen (TDKS) im Rahmen der TDDFT. Diese ersetzen die Vielteichlchen-SG durch ein System nichtlinearer Einteilchen-SGn, die mittels eines zusätzlichen Potentials gekoppelt sind.

Obwohl die TDDFT für physikalische und quantenchemische Rechungen weit verbreitet ist und Softwarepakete zur direkten Verwendung zur Verfügung stehen, sind die mathematischen Grundlagen der TDDFT noch in der Entwicklung und grundlegende Vermutungen sind noch immer unbewiesen.
Das Hauptanliegen der vorliegenden Arbeit ist es, einen konsistenten und mathematisch präzisen Rahmen für die TDKS-Gleichungen und verwandte Optimalsteuerungsprobleme zu liefern.

Im ersten Teil der Arbeit wird die Dichtefunktionaltheorie (DFT) und die TDDFT eingeführt. Diese Einführung enthält eine detaillierte Darstellung der für die DFT relevanten Funktionenmengen.
Außerdem wird die bereits bekannte Äquivalenz zwischen dem ursprünglichen Schrödingerproblem und dem TDKS-System mathematisch weitergehend diskutiert.

Der derzeit erfolgreichste Ansatz, Vielteichenrechnungen im Rahmen der TDDFT umzusetzen, sind die TDKS-Gleichungen. Es sind jedoch bisher nur wenige mathematische Resultate über diese Gleichungen verfügbar und diese Ergebnisse behandeln nicht alle Probleme, die bei der Formulierung von Optimalsteuerungsproblemen bei
TDKS-Gleichungen auftreten.
Es ist das Ziel des zweiten Teils dieser Arbeit, diese für die Wohldefiniertheit der Formulierung der Optimalsteuerungsaufgabe maßgeblichen Probleme, wie die höhere Regularität der Lösungen der TDKS-Gleichungen und schwächere Voraussetzungen an das externe Kontrollpotential, zu behandeln. Dazu wird die Existenz und Eindeutigkeit von Lösungen der nichtlinearen TDKS-Gleichungen mit dem Galerkin-Ansatz und Energieabschätzungen untersucht.

Im dritten Teil dieser Arbeit werden Probleme optimaler Steuerung bei TDKS-Gleichungen formuliert und untersucht. Dafür werden relevante Kostenfunktionale, die das Ziel der Steuerung modellieren, diskutiert.
Die Optimalsteuerungsprobleme ergeben sich aus der Optimierung dieser Kosten unter der Nebenbedingung der TDKS-Gleichungen. Die Analyse dieser Probleme ist neu und stellt eines der Hauptergebnisse der vorliegenden Arbeit dar.
Insbesondere wird die Existenz einer optimalen Steuerung bewiesen und ihre Charakterisierung mittels eines TDKS-Optimalitätssystem im Detail diskutiert. Dazu wird die Fréchet-Differenzierbarkeit des TDKS-Models und des Kostenfunktionals mit \(H^1\)-Steuerungskosten betrachtet.
Abschließend wird der reduzierte Gradient im \(L^2\)- und im \(H^1\)-Skalarprodukt hergeleitet. Während die \(L^2\)-Optimierung in der Literatur weit verbreitet ist, wird in dieser Arbeit die Verwendung des \(H^1\)-Gradienten mit theoretischen Argumenten und resultierenden numerischen Vorteilen motiviert.

Der letzte Teil dieser Arbeit ist der numerischen Approximation des TDKS-Optimalitätssystems und seiner Lösung mittels gradientenbasierter Optimierungsmethoden gewidmet.
Für ersteres wird die Strang Zeitsplitting-Pseudospektralmethode diskutiert, eine Zusammenfassung einiger aktueller theoretischer Abschätzungen für dieses Schema angegeben und diese Abschätzungen numerisch überprüft.
Für letzteres wird das (projizierte) nichtlineare Verfahren der konjugierten Gradienten (NCG) implementiert und verwendet um die theoretische Analyse dieser Arbeit mit den Ergebnissen numerischer Rechnungen für verschiedene Kostenfunktionale zu validieren.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:15354
Date January 2017
CreatorsSprengel, Martin
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0034 seconds