Return to search

Kvantitativní slabá kompaktnost / Quantitative weak compactness

In this thesis we study quantitative weak compactness in spaces (C(K), τp) and later in Banach spaces. In the first chapter we introduce several quantities, which in different manners measure τp-noncompactness of a given uniformly bounded set H ⊂ RK . We apply the results in Banach spaces in chapter 2, where we prove (among others) a quantitative version of the Eberlein-Smulyan theorem. In the third chapter we focus on convex closures and how they affect measures of noncompactness. We prove a quantitative version of the Krein-Smulyan theorem. The first three chapters show that measuring noncompactness is intimately related to measuring distances from function spaces. We follow this idea in chapters 4 and 5, where we measure distances from Baire one functions first in RK and later also in Banach spaces. 1

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:304150
Date January 2012
CreatorsRolínek, Michal
ContributorsSpurný, Jiří, Kalenda, Ondřej
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds