Return to search

Globální krylovovské metody pro řešení lineárních algebraických problémů s maticovým pozorováním / Global krylov methods for solving linear algebraic problems with matrix observations

In this thesis we study methods for solving systems of linear algebraic equati- ons with multiple right hand sides. Specifically we focus on block Krylov subspace methods and global Krylov subspace methods, which can be derived by various approaches to generalization of methods GMRES and LSQR for solving systems of linear equations with single right hand side. We describe the difference in construction of orthonormal basis in block methods and F-orthonormal basis in global methods, in detail. Finally, we provide numerical experiments for the deri- ved algorithms in MATLAB enviroment. On carefully selected test problems we compare convergence properties of the methods. 1

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:397839
Date January 2019
CreatorsRapavý, Martin
ContributorsHnětynková, Iveta, Tichý, Petr
Source SetsCzech ETDs
LanguageSlovak
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0019 seconds