Return to search

Customer acquisition and onboarding at an online grocery company

The master thesis is carried out in a collaboration with a Swedish online grocery company. The goal of the thesis is to investigate if it is possible to explain the underlying factors that affect new customers to be retained. Because of the difficulties of defining churn and retention in non-contractual settings, most of the literature is focused on contractual and subscription settings. There are a limited number of studies when trying to predict customer churn in non-contractual businesses and even fewer studies that emphasize retention. This thesis aims to contribute to the field of retention in non-contractual business and also highlight the assumptions and drawbacks of churn-related task.  To achieve the goal of the thesis a literature review is carried out together with two statistical learning approaches; logistic regression model and extreme gradient boosting model. The results shows that it is possible to find the underlying factors that drive customers to be retained. The greatest drivers that could increase the probability of retaining new customers are the days between the first and second order, the second order value, and the total order value. / Examensarbetet är genomfört som ett samarbete med ett svenskt matvaruföretag på nätet. Målet med examensarbetet är att undersöka om det är möjligt att förklara de bakomliggande faktorer som påverkar nya kunder att stanna kvar som kunder. På grund av svårigheterna med att definiera kundbortfall och bibehållande av kunder i icke-kontraktuella affärer fokuserar den mesta av litteraturen på avtals- och prenumerationsmiljöer. Det finns ett begränsat antal studier där man försöker förutsäga kundbortfall i icke-kontraktuella verksamheter och ännu färre studier som fokuserar på bibehållande av kunder. Denna uppsats syftar till att bidra till området bibehållande av kunder i icke-kontraktuella affärer och även belysa antagandena och nackdelarna med analyser inom kundbortfall.  För att uppnå målet med avhandlingen genomförs en litteraturgenomgång tillsammans med två statistiska lärandemetoder; logistisk regressionsmodell och extreme gradient boosting model. Resultaten visar att det är fullt möjligt att hitta de bakomliggande faktorerna som driver kunderna att stanna kvar. De största drivkrafterna som kan öka sannolikheten för att kunder ska bibehållas är dagarna mellan första och andra ordern, andra ordervärdet och det totala ordervärdet.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-203209
Date January 2022
CreatorsBorg, Ida
PublisherUmeå universitet, Institutionen för matematik och matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0034 seconds