Return to search

Critical Coupling and Synchronized Clusters in Arbitrary Networks of Kuramoto Oscillators

abstract: The Kuramoto model is an archetypal model for studying synchronization in groups

of nonidentical oscillators where oscillators are imbued with their own frequency and

coupled with other oscillators though a network of interactions. As the coupling

strength increases, there is a bifurcation to complete synchronization where all oscillators

move with the same frequency and show a collective rhythm. Kuramoto-like

dynamics are considered a relevant model for instabilities of the AC-power grid which

operates in synchrony under standard conditions but exhibits, in a state of failure,

segmentation of the grid into desynchronized clusters.

In this dissertation the minimum coupling strength required to ensure total frequency

synchronization in a Kuramoto system, called the critical coupling, is investigated.

For coupling strength below the critical coupling, clusters of oscillators form

where oscillators within a cluster are on average oscillating with the same long-term

frequency. A unified order parameter based approach is developed to create approximations

of the critical coupling. Some of the new approximations provide strict lower

bounds for the critical coupling. In addition, these approximations allow for predictions

of the partially synchronized clusters that emerge in the bifurcation from the

synchronized state.

Merging the order parameter approach with graph theoretical concepts leads to a

characterization of this bifurcation as a weighted graph partitioning problem on an

arbitrary networks which then leads to an optimization problem that can efficiently

estimate the partially synchronized clusters. Numerical experiments on random Kuramoto

systems show the high accuracy of these methods. An interpretation of the

methods in the context of power systems is provided. / Dissertation/Thesis / Doctoral Dissertation Applied Mathematics 2018

Identiferoai:union.ndltd.org:asu.edu/item:49277
Date January 2018
ContributorsGilg, Brady (Author), Armbruster, Dieter (Advisor), Mittelmann, Hans (Committee member), Scaglione, Anna (Committee member), Strogatz, Steven (Committee member), Welfert, Bruno (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format135 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0018 seconds