Return to search

Pattern formation through synchronization in systems of nonidentical autonomous oscillators

This work is concerned with the spatio-temporal structures that emerge when non-identical, diffusively coupled oscillators synchronize. It contains analytical results and their confirmation through extensive computer simulations. We use the Kuramoto model which reduces general oscillatory systems to phase dynamics. The symmetry of the coupling plays an important role for the formation of patterns. We have studied the ordering influence of an asymmetry (non-isochronicity) in the phase coupling function on the phase profile in synchronization and the intricate interplay between this asymmetry and the frequency heterogeneity in the system. The thesis is divided into three main parts. Chapter 2 and 3 introduce the basic model of Kuramoto and conditions for stable synchronization. In Chapter 4 we characterize the phase profiles in synchronization for various special cases and in an exponential approximation of the phase coupling function, which allows for an analytical treatment. Finally, in the third part (Chapter 5) we study the influence of non-isochronicity on the synchronization frequency in continuous, reaction diffusion systems and discrete networks of oscillators. / Die vorliegende Arbeit beschäftigt sich in Theorie und Simulation mit den raum-zeitlichen Strukturen, die entstehen, wenn nicht-identische, diffusiv gekoppelte Oszillatoren synchronisieren. Wir greifen dabei auf die von Kuramoto hergeleiteten Phasengleichungen zurück. Eine entscheidene Rolle für die Musterbildung spielt die Symmetrie der Kopplung. Wir untersuchen den ordnenden Einfluss von Asymmetrie (Nichtisochronizität) in der Phasenkopplungsfunktion auf das Phasenprofil in Synchronisation und das Zusammenspiel zwischen dieser Asymmetrie und der Frequenzheterogenität im System. Die Arbeit gliedert sich in drei Hauptteile. Kapitel 2 und 3 beschäftigen sich mit den grundlegenden Gleichungen und den Bedingungen für stabile Synchronisation. Im Kapitel 4 charakterisieren wir die Phasenprofile in Synchronisation für verschiedene Spezialfälle sowie in der von uns eingeführten exponentiellen Approximation der Phasenkopplungsfunktion. Schliesslich untersuchen wir im dritten Teil (Kap.5) den Einfluss von Nichtisochronizität auf die Synchronisationsfrequenz in kontinuierlichen, oszillatorischen Reaktions-Diffusionssystemen und diskreten Netzwerken von Oszillatoren.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:1597
Date January 2007
CreatorsTönjes, Ralf
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Physik und Astronomie
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://creativecommons.org/licenses/by-nc-nd/2.0/de/

Page generated in 0.0027 seconds