Cette thèse porte sur la vérification des règles ajoutées de l'Atelier B en utilisant une plate-forme appelée BCARe qui repose sur un plongement de la théorie sous-jacente à la méthode B (théorie de B) dans l'assistant à la preuve Coq. En particulier, nous proposons trois approches pour prouver la validité d'une règle, ce qui revient à prouver une formule exprimée dans la théorie de B. Ces trois approches ont été évaluées sur les règles de la base de règles de SIEMENS IC-MOL. La première approche dite autarcique est développée avec le langage de tactiques de Coq Ltac. Elle repose sur une première étape qui consiste à déplier tous les opérateurs ensemblistes pour obtenir une formule de la logique du premier ordre. Puis nous appliquons une procédure de décision qui met en oeuvre une heuristique naïve en ce qui concerne les instanciations. La deuxième approche, dite sceptique,appelle le prouveur automatique de théorèmes Zenon après avoir effectué l'étape de normalisation précédente. Nous vérifions ensuite les preuves trouvées par Zenon dans le plongement profond de B en Coq. La troisième approche évite l'étape de normalisation précédente grâce à une extension de Zenon utilisant des règles d'inférence spécifiques à la théorie de B. Ces règles sont obtenues grâce à la technique de superdéduction. Cette dernière approche est généralisée en une extension de Zenon à toute théorie grâce à un calcul dynamique des règles de superdéduction. Ce nouvel outil, appelé Super Zenon, peut par exemple prouver des problèmes issus de la bibliothèque de problèmes TPTP.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00840484 |
Date | 23 April 2013 |
Creators | Jacquel, Mélanie |
Publisher | Conservatoire national des arts et metiers - CNAM |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds