Return to search

Effets d'un entrainement de précision à la marche sur la récupération locomotrice et la douleur neuropathique à la suite d'une lésion médullaire incomplète

Introduction : La diminution du contrôle volontaire de la marche représente un déficit majeur affectant la qualité de vie des personnes ayant une lésion médullaire incomplète (LMi). À ce jour, les moyens utilisés pour favoriser la récupération locomotrice sont principalement des entraînements du « rythme locomoteur de base » qui ciblent principalement le contrôle automatique de la marche. Bien que ces entraînements aient démontré certains bénéfices, les améliorations de la capacité locomotrice qui en résultent demeurent limitées. Une explication serait que ces entraînements peu challengeants ne recrutent qu’une partie des circuits neuraux contrôlant la locomotion, ne permettant pas une récupération optimale post-LMi. Notre hypothèse générale est donc que l’utilisation d’un entraînement locomoteur plus challengeant permettrait de solliciter davantage les circuits neuraux impliqués dans le contrôle volontaire de la marche (en particulier la voie corticospinale), en plus des circuits déjà impliqués (automatiques), et mènerait à une amélioration globale de la fonction locomotrice en termes de vitesse et d’endurance, incluant aussi la fonction sensorimotrice avec l’équilibre et la proprioception. À la suite d’une LMi, une deuxième conséquence impactant considérablement la qualité de vie des patients est le développement de douleur neuropathique (DN). Plusieurs études chez l’animal suggèrent que les mécanismes impliqués dans le développement de la DN et ceux impliqués dans la récupération locomotrice partagent certains circuits neuronaux et qu’une inhibition réciproque existerait entre les 2. Cependant, chez l’homme, ces effets demeurent encore méconnus. Notre hypothèse secondaire est donc que l'utilisation d’un entraînement locomoteur sollicitant davantage les circuits neuronaux diminuerait la DN, grâce aux effets d’inhibition réciproque. L’objectif général de cette thèse est de développer un entrainement capable de solliciter davantage les circuits neuraux impliqués dans le contrôle volontaire de la marche, afin de mesurer son effet sur la récupération locomotrice incluant la vitesse et l’endurance à la marche, et incluant la fonction sensorimotrice avec la proprioception et l’équilibre, et enfin de mesurer son effet sur la DN. Méthodologie : Afin de mesurer la sollicitation de la voie corticospinale lors de la marche, l’excitabilité corticospinale a été mesurée de manière non-invasive à l’aide de la stimulation magnétique transcrânienne lors d’une tâche de marche simple et lors d’une tâche de précision à la marche tout d’abord chez des participants en santé (étude 1), puis par la suite chez des individus ayant une LMi (étude 2). La tâche de précision à la marche consistait à marcher sur tapis roulant tout en plaçant les pieds sur des cibles virtuelles rétro-projetées sur un écran placé en face du tapis. Les cibles étaient séparées par différentes distances. Dans l’étude 3, un nouveau test de mesure de proprioception à la cheville pendant la marche à la suite d’une LMi a été mis au point à l’aide d’une orthèse robotisée afin de caractériser l’aspect sensorimoteur lors d’une tâche dynamique. Dans l’étude 4, la tâche de précision à la marche a été réalisée sous forme d’entrainement pour un total de 16 sessions étalées sur 4 à 5 semaines chez des individus ayant une LMi. Des mesures de vitesse, d’endurance, d’équilibre, de proprioception et de douleur neuropathique ont été prises pré- et post-entrainement puis comparées. La satisfaction des participants envers l’entrainement a aussi été documentée. Résultats : Les résultats des études 1 et 2 ont montré qu’une tâche de précision à la marche permettait de solliciter davantage la voie corticospinale comparée à une tâche de marche simple chez des participants sains et des individus avec une LMi. L’étude 3 a montré une bonne fidélité et validité du test mis au point afin de mesurer la proprioception à la cheville pendant la marche. L’étude 4 a montré la faisabilité d’effectuer un entrainement de précision à la marche chez des individus avec une LMi. Une amélioration de la vitesse, de l’endurance, de la proprioception et de l’équilibre a été observée pour le groupe tandis qu’une tendance vers la diminution de douleur neuropathique a été observée pour les individus préalablement atteints. Les participants ont montré une excellente satisfaction envers l’entrainement en général. Conclusions : Les résultats de cette thèse ont permis de montrer qu’il était possible, avec une tâche de précision à la marche, d’augmenter l’excitabilité de la voie corticospinale chez un groupe de participants sains et un groupe de participants ayant une LMi. L’utilisation de cette tâche sous forme d’entrainement a mis en évidence le bénéfice de l’utilisation d’un entrainement challengeant sur la récupération locomotrice incluant l’aspect sensorimoteur, et sur la douleur neuropathique chez une population neurologique. / Introduction: After an incomplete spinal cord injury (iSCI), the voluntary control of walking is often compromised. This reduces the ability to participate in daily activities and has a negative impact on quality of life. Conventional locomotor trainings, based on spinal circuits stimulation, in other words stimulation of the “automatic control” have shown some benefits, but improvements in walking function after iSCI remain limited. It was proposed that these less challenging trainings do not recruit all the circuits involved in gait control, and so, are not sufficient to optimize gait recovery after an iSCI. The hypothesis is that a more challenging training that stimulate all gait circuits including voluntary control (more particularly the corticospinal tract), and automatic control, could lead to an improvement of gait recovery. This recovery included improvements in gait speed, gait endurance, and in sensorimotor function measured with balance and proprioception. Another important issue after an iSCI is the development of neuropathic pain (NP). While there is a large body of evidence in animal studies showing that locomotor recovery and NP might be competing for some shared neural circuits, human studies are still sparse. A secondary hypothesis is that a training that further stimulate all gait circuits could reduce NP. The objective of this thesis is therefore to develop a gait training that further stimulate voluntary control of gait to measure the effects on gait recovery including gait speed, endurance and sensorimotor aspects (proprioception and balance) and to measure its effect on NP. Methods: Corticospinal excitability was assessed using transcranial magnetic stimulation during a simple walking task, and during a precision walking task firstly in healthy participants (study1), and secondly in individuals with an iSCI (study 2). The precision walking task consisted of stepping onto virtual targets projected on a screen in front of them and separated by different distances during treadmill walking. In study 3, a new robotic test was developed to measure the ankle proprioception during gait in individuals with an iSCI and characterize sensorimotor function during a dynamic task. In study 4, a protocol training using the precision task was performed for 16 sessions over 4 to 5 weeks in individuals with an iSCI. Locomotor recovery including gait speed, endurance, balance and ankle proprioception and neuropathic pain were assessed pre- and post-training and compared. Participants’ satisfaction regarding the training protocol was measured post training. Results: Results from studies 1 and 2 showed that it is possible to further increase the corticospinal excitability during a precision walking task compared to a simple walking task in healthy participants and in individuals with an iSCI. Results from study 3 showed a good reliability and validity of the robotic test to measure ankle proprioception during gait. Results from study 4 showed the feasibility to perform a precision gait training in individuals with an iSCI. Significant improvements of gait speed, endurance, proprioception and posture and a trend of NP decrease were measured after training. Participants’ satisfaction regarding this training was excellent. Conclusions: Results from this thesis showed that it is possible, using a precision walking task, to further increase corticospinal tract involvement than during normal gait in healthy participants and in individuals with an iSCI. This approach highlights the potential of a more challenging gait training for gait rehabilitation in humans and provide a simple solution to enhance corticospinal drive to optimize gait recovery including sensorimotor function, and to decrease NP after CNS lesions such as spinal cord injury.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/67789
Date10 February 2024
CreatorsDambreville, Charline
ContributorsBlanchette, Andréanne, Bouyer, Laurent
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xx, 227 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0034 seconds