Return to search

Molecular Characterization of Pediatric Brainstem Gliomas (DIPG) and Identification of New Therapeutic Targets / Caractérisation moléculaire des gliomes malins pédiatriques du tronc cérébral (DIPG) et identification de nouvelles stratégies thérapeutiques

Les DIPG représentent les tumeurs cérébrales pédiatriques les plus sévères. Aucun progrès dans leur prise en charge n’a été accompli au cours des 50 dernières années et la radiothérapie ne demeure que transitoirement efficace. Récemment, une mutation somatique de l’histone H3 (K27M) spécifique des DIPG a été trouvée chez environ 95% des patients. Elle est aujourd’hui considérée comme l'événement oncogénique initiateur de ces tumeurs. Deux sous-groupes majeurs de patients présentant des programmes oncogéniques et une réponse à la radiothérapie distincts peuvent être définis en fonction du gène dans lequel l’altération survient, codant les variantes protéiques H3.1 ou H3.3. Nous avons réalisé deux cribles de létalité synthétique par ARN interférence ciblant le kinome humain afin d'identifier d’une part les gènes nécessaires à la survie des DIPG et d’autre part les gènes dont l’inhibition sensibilise ces tumeurs à la radiothérapie. Le double objectif de ce projet était de mieux comprendre la biologie sous-jacente à l’oncogenèse des DIPG et de découvrir de nouvelles cibles thérapeutiques.Nous avons mis en évidence 41 gènes requis pour la survie des DIPG sans effet délétère majeur sur des cellules contrôles normales. Parmi eux, nous avons identifié VRK3 codant une serine thréonine kinase dont les fonctions restent peu décrites à ce jour et qui n'avait jamais été associée préalablement à l'oncogenèse de DIPG. Nous avons pu confirmer par la suite que son inhibition conduit à un arrêt total de la prolifération des cellules de DIPG associé à d’importants changements morphologiques, plus particulièrement dans les tumeurs mutées pour H3.3-K27M. VRK3 constitue par conséquent une nouvelle cible thérapeutique prometteuse dans cette pathologie à l’issue fatale pour la totalité des patients.En parallèle, un crible de survie similaire a été réalisé en conjonction avec l’irradiation des cellules. Très peu d’ARN interférents ont permis de sensibiliser les cellules H3.3-K27M à la radiothérapie contrairement aux cellules H3.1-K27M. Ce travail nous a permis de mettre en évidence une différence significative de radiosensibilité des modèles vitro de DMG en fonction du sous-groupe de tumeurs considéré, H3.1- ou H3.3-K27M muté, conformément à la survie des patients observée suite à la radiothérapie. Ces résultats inédits laissent entrevoir des perspectives d’amélioration du traitement de référence des patients atteints de DIPG actuellement identique quelle que soit leur génotype. / DIPG is one of the most severe paediatric brain tumours. No progress has been made in their management over the past 50 years and radiotherapy remains only transiently effective. Recently, a specific somatic mutation in the histone H3 (K27M) has been found in approximately 95% of DIPG patients and can be considered as the oncogenic driver of these tumours. Two major subgroup of patients with distinct oncogenic program and response to radiotherapy can be defined according to the gene in which the alteration occurs, encoding the H3.1 or H3.3 protein variants. We performed two synthetic lethality screens by RNA interference targeting the human kinome in order to identify the genes responsible for DIPG cell survival, as well as those sensitizing tumour cells to radiotherapy after inhibition. The dual purpose of this project was to better understand the biology underlying oncogenesis of DIPGs and to discover new therapeutic targets.We identified 41 genes required for DIPG cell survival with no major deleterious effect on normal control cells. Among them, we identified VRK3, a serine threonine kinase never involved in DIPG oncogenesis with functions remaining poorly described to date. We have shown that its inhibition leads to a complete arrest of DIPG cell proliferation and is additionally associated with important morphological changes, more particularly in H3.3-K27M mutated tumours. VRK3 is therefore a promising new therapeutic target for all patients in this fatal pathology.In parallel, a similar survival screen was performed in conjunction to cell radiation and very few interfering RNAs enhance H3.3-K27M cell radiosensitivity, in contrast to H3.1-K27M cells. These data highlighted a significant difference in radiosensitivity of the DMG in vitro models in H3.1- versus H3.3-K27M mutated tumours, in a concordant way with patient survival following radiotherapy. These unprecedented results suggest new opportunities for improving the current treatment of DIPG patients regardless of their genotype.

Identiferoai:union.ndltd.org:theses.fr/2018SACLS269
Date01 October 2018
CreatorsSilva Evangelista, Cláudia
ContributorsUniversité Paris-Saclay (ComUE), Debily, Marie-Anne
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds