This work is concerned with an evolution inclusion of a form, in a triple of spaces \V -> H -> V*", where U is a continuous non-decreasing process, M is a locally square-integrable martingale and the operators A (multi-valued) and B satisfy some monotonicity condition, a coercivity condition and a condition on growth in u. An existence and uniqueness theorem is proved for the solutions, using semi-implicit time-discretization schemes. Examples include evolution equations and inclusions driven by square integrable Levy martingales.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:562802 |
Date | January 2010 |
Creators | Bocharov, Boris |
Contributors | Gyongy, Istvan |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/3772 |
Page generated in 0.0021 seconds